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ABSTRACT

We formulate the task of 3D object retrieval as a visual search
problem where a database containing videos of objects cap-
tured manually from different viewpoints is queried using a
single image. We propose to aggregate visual information of
similar views and use the Fisher vector (FV) framework to
compactly represent a database of objects. Large-scale exper-
iments on an existing video dataset that we complemented
with image queries, shows that our aggregation schemes sig-
nificantly outperform standard retrieval techniques. When
representing our database with only 4 FVs per object, our
approach performs with a mean average precision (mAP) of
73.0% on our dataset while the baseline (no aggregation) only
reaches a mAP of 43.8%. It can also reach a 72.0% mAP level
with a 10× smaller database than the baseline.

Index Terms— Image retrieval, Visual search, 3D object
retrieval, Fisher vector aggregation

1. INTRODUCTION

Real-world objects that we interact with in the everyday life,
such as a sculpture in a museum or a product in a mall, are
intrinsically 3D. Mobile visual search methods [1, 2, 3, 4], and
commercial applications such as Google Goggles [5], offer
the capability to automatically identify the objects. They typi-
cally compare a query image captured by the camera against a
large database of images of annotated objects. However, the
appearance of an object with complex geometry varies consid-
erably when the viewpoint changes, which makes the problem
of 3D object retrieval from a single image query extremely
challenging. Previous work in the area does not take advantage
of the 3D nature of the data [1, 2, 6], and so they usually fail
when query and database images are taken from significantly
different viewpoints.

On the other hand, there is a vast literature on model-based
and shape-based 3D object retrieval [7, 8, 9, 10, 11, 12]. In
this line of work, the goal is to design 3D-shape descriptors
and retrieval schemes which are able to effectively retrieve
a particular 3D model from a given query. Their main as-
sumption is to have access to accurate scans of the object at
both train and query time. This is not a trivial process and
the data acquisition is usually performed in a very controlled
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Fig. 1: Overview of the indexing and retrieval process. The frames of the video for each
object that we want to recognize are clustered using a predefined aggregation scheme.
A FV is then generated from each cluster, which makes the representation very compact.
The database can be queried with a single image by generating its FV and matching it
against the FVs in the index. Our contribution is to introduce aggregation schemes that
achieve good retrieval performance despite high compression factors (POSE and SIM).

setup. Some recent approaches attempt to introduce a less con-
strained scenario by estimating the object pose and selecting
query views [13, 12, 14], thus allowing also hybrid 2D-3D
retrieval schemes. However, although they require less con-
straints on the query side, the database collection still needs
accurate and controlled object scans. Thus it is very difficult
to scale up the process to large collections of objects.

In this work, we try to get the best of both worlds. First, our
approach targets the 3D object retrieval problem in the context
of mobile and large-scale visual search. It is thus important
to represent the data associated to each object in a compact
way [1, 4]. To this end, we rely on the Fisher Vector (FV)
framework that has been shown to efficiently query a large
database of images or videos [15, 16, 17, 18, 19]. Second,
our framework enriches the image representation such that
the different poses of the 3D object are well encoded. That is
partially inspired by the high performance obtained in 2D-3D
matching and registration for recognizing landmarks [20, 21]
or large (city scale) scenes [22, 23, 24]. In contrast to previous
works, we study the specific 3D object retrieval scenario in
which a precise 3D scanning rig is not available and we just
use noisy video scans (i.e. RGB videos). This is an important
aspect at a large scale, where the data collection might be
crowdsourced, and so it is desirable that the object videos be
captured manually in an unconstrained fashion.

Our key technical contribution is to generate a compact



signature of a video sequence that aggregates the features com-
ing from coherent object poses. We evaluate our two proposed
aggregation methods and compare them with three others in
large-scale experiments. Retrieval experiments are performed
by using an existing video dataset [25], enhanced with a new
set of query images. When representing our database with
only 4 FVs per object, we show that our proposed approaches
perform with a mean average precision (mAP) of 73.0% and
72.7%, respectively, while the baseline (no aggregation) only
reaches a mAP of 43.8%. Moreover, we can reach a 72.0%
mAP level with a 10× smaller database than the baseline. This
is particularly important in a mobile visual search scenario
where all or part of the database is expected to be stored on
the device.

2. POSE-AWARE AND SIMILARITY-BASED FISHER
AGGREGATION

Traditionally, mobile visual search (MVS) systems have en-
abled retrieval of objects that are near-planar or have one
canonical view, such as book covers, and that can be repre-
sented in the database using a single image. Here, the focus is
on using a single image query to retrieve objects with a more
complex 3D structure, like sculptures. The retrieval system
has access to different views of the object at indexing time.

A naive retrieval system would directly build upon tradi-
tional MVS techniques, by storing each different view of the
object in the database and indexing them independently. At
query time, the system would use the image query to search for
the best match against all views for each object. The drawback
of this approach is that the database is required to store a large
number of items, which leads to scalability problems. In this
work, we address this issue by combining different views to
construct a much more compact representation of the object.

In our setup, the objects are captured in a semi-controlled
way: the annotators were instructed to collect a short video
to represent an object of their choice. The collection process
used simple handheld cameras, and each object was captured
in a different environment.

The system architecture is illustrated in Fig. 1. The main
focus of this work is on the frame aggregation. We show that
the choice of aggregation scheme is critical in order to get
higher retrieval performance.

POSE: pose-aware aggregation. We propose to aggregate
different object views such that those with similar camera
positions are clustered together. Intuitively, this leads to a
robust aggregation technique. For example, consider the case
where the query image presents an object view which does
not exist in the database. It is likely that the query view is
similar to some database views which are captured around
nearby camera positions. By aggregating database views that
are captured in the same region of the 3D space, we incorporate
many visual elements that could be visible at these positions
or nearby positions.

Due to the semi-constrained collection process, the camera
positions were not pre-defined, so it is necessary to estimate
them automatically from the different object views. On the
other hand, the estimates might not need to be perfect: since
our objective is to use the camera poses to select which views
are aggregated together, a rough estimate might be sufficient.

In the offline stage, we start by using a standard structure
from motion (SfM) algorithm, by Snavely et al. [26], to com-
pute a 3D model of the object and find the camera positions.
We do not have access to the cameras that were used to col-
lect the data so we estimate the camera intrinsic parameters
by using the estimate of the field of view from the nominal
specifications. This is sufficient under some reasonable as-
sumptions (no lens distortion, no skew, principal point located
at the center of the image). In this process, some views may
not be properly registered so an estimate of the camera po-
sitions cannot be obtained. This may happen if the view is
too dissimilar to the rest of the sequence, for example due to
motion blur or lack of texture. Such views, called invalid, were
discarded — we consider that they did not provide relevant
information.

After obtaining an estimate of the camera extrinsic param-
eters (position and rotation), the valid views are clustered into
K clusters by using their estimated 3D camera positions and
the K-means algorithm. Finally, the views in each cluster are
aggregated into a global signature which describes all of these
different views. We make use of Fisher vectors (FV) [15], a
state-of-the-art global image descriptor. In this case, the local
features from all of the different views are pooled together to
generate one FV that efficiently represents all of these views.
We call this aggregation technique POSE.

SIM: similarity-based aggregation. Although the SfM
stage makes intensive use of the underlying structure of the
data (different views of a fixed object captured by a mobile
handheld camera), it introduces additional complexity and
strongly relies on a successful SfM system. For this reason we
design an alternative version of this algorithm that we call SIM
that aims at aggregating views based on visual similarity. The
process is as follows: we first extract FVs from all views in-
dependently and cluster these high-dimensional vectors using
K-means. This generates K sets of views that we aggregate
into one FV per set.

3. EXPERIMENTS

3.1. A new dataset for query-by-image 3D object retrieval

The new dataset by Choi et al. [25] is particularly fitting for
this study. It contains videos of various 3D objects that were
captured by different operators, using an unconstrained RGB-
D camera. There is only one video per object. We focus on
the “sculptures” part of this dataset and we complemented it
by capturing our own set of query images. This allow us to
test the robustness of our approach to different capture condi-
tions (different mobile device, lighting conditions, etc.). After



duplicate removal, this subset contains 453 videos captured
at a resolution of 640 × 480 and a frame rate of 30 FPS. In
this work, the depth channel of these videos was ignored. We
captured queries for 35 of these objects, taking 5 photos per
object with a mobile device camera, for a total of 175 queries1.

3.2. Experimental protocol

FV parameters. Local features are extracted using a Hessian-
affine detector [27] and described with SIFT descriptors [28].
These 128D descriptors are then projected to a 32D space
using PCA, as in [18, 29, 30]. When generating the FVs
from these descriptors, we use 512 Gaussians, as in previous
work [18, 29]. We also evaluate results using 256 and 128
Gaussians to study whether our findings are also valid for
more compact — but lower accuracy — representations. We
use state-of-the-art binarized FVs [30], which were selected
by the MPEG Compact Descriptors for Visual Search (CDVS)
standardization effort for their scalable retrieval performance.

Indexing and retrieval. For our experiments, we extracted
FVs using each of our schemes for various values of K. The
frames used at that stage are sampled from the original video
sequences at 1 FPS. These FVs correspond to our database-
side index. Then, each query image is processed individually
and its corresponding FV is matched against all the FVs in the
index. The list of FVs is then sorted by weighted Hamming
distance [30] to generate a ranked list of object. Retrieval
performance is assessed using mean average precision (mAP)
on that list.

Baselines. We compare the proposed aggregation schemes
against three baselines:

INDEP: individual views. In this scheme, which is the
naive approach mentioned in the previous section, we do not
perform feature aggregation from multiple views, but we only
generate FVs out of the features from single views indepen-
dently. When a value of K is given, we select a subset of K
views equally spaced (in time) over the whole sequence and
generate one FV per view to represent our object.

RAND: random view aggregation. We create K sets of
views by randomly assigning each frame to one set. We then
aggregate all the features from the views of each set into a FV.

TEMP: temporal view aggregation. We divide a video
sequence into K segments of approximately equal length and
we generate FVs from the views of each segment.

It is important to note that for any value of K, RAND,
TEMP and SIM use information from all the views of the
sequence and POSE uses information from all views consid-
ered valid after the SfM stage. INDEP typically uses the least
amount of information compared to the other schemes, espe-
cially for low values of K since N − K views are ignored
(where N is the number of views in the sequence), but the
memory requirements and retrieval speed is still the same as

1We will release these queries with publication of this work.
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Fig. 2: Retrieval results: mean average precision (mAP) as a function of the number of
database signatures per video (K), for different aggregation methods. FVs are generated
using 512 Gaussians.

Sampling rate 1 FPS 3 FPS

First quartile 9.91% 52.58%
Median 34.62% 90.15%
Third quartile 78.44% 99.42%

Table 1: Comparison of statistics on the proportion of valid views after the SfM stage
when sampling the videos at 1 FPS and 3 FPS. At 3 FPS, half of the videos get more
than 90% valid views.

the other schemes for equal values of K. A visualization of
the clusters associated to each frame of an example sequence
is given in Fig. 3.

3.3. Experimental results

Structure from motion results. Choosing the frame rate
used for the database videos was critical for the SfM stage
and the quality of the reconstructions highly depended on that.
Processing all the frames in the sequence would give the high-
est quality reconstruction, because the minimal appearance
changes from one view to the next would allow for reliable
registration of consecutive views. However, using a very high
frame rate is not practical because the complexity considerably
increases with the number of input images. On the other hand
choosing a frame rate too low is detrimental to the quality
of the reconstruction. For these sequences, we found that a
sampling rate of 3 FPS was a reasonable trade-off between
camera pose quality and processing time. The SfM system
can work poorly for some videos, since some of them are very
challenging (e.g. videos with low contrast) but at this frame
rate we can get a high proportion of valid views for most of
them. We compare statistics on this quantity in Table 1.

Retrieval results. We show the results of our experiments
using 512 Gaussians in Fig. 2. It is to be noted that by design
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Fig. 3: Example of view aggregation for K = 6 on a sequence of 121 frames. Each dot corresponds to one view and the views aggregated together are shown in the same color. The
images shown at the bottom represent a subset of the views in chronological order, the outline corresponding to the color of the set each view belongs to in POSE. At the top, we
present typical views belonging to the same clusters for POSE and SIM.

the behavior of these schemes is expected to be very similar
for high values of K. Indeed, with a large number of clusters,
each cluster contains one or a few frames, so performance
should converge to the same level.

The goal of this work is to achieve high accuracy with a
low value of K, so it is desired to have the retrieval accuracy
reach its maximum value as fast as possible. It is clear that
aggregating views is an excellent strategy: INDEP performs
considerably worse than RAND, TEMP, SIM and POSE for
low values of K, and the mAP only becomes comparable with
the base values for the aggregated schemes when using more
than 10 views. Regarding the other schemes, RAND performs
the worst and POSE and SIM deliver the highest performances,
with no clear better option among the two.

We illustrate in Fig. 3 how views are clustered for the
different schemes within one video. The different clusters
obtained with POSE capture very distinct appearances. For
example (Fig. 3 bottom) the light blue cluster contains all
the frontal views of the object, the purple cluster the ones
from the right, etc. The clusters obtained by SIM follow a
similar distribution even if the frame assignment looks slightly
more noisy. This can be explained by the variation of the set
of features when there is motion blur, or if the background
is altered, which can considerably alter the FV for a given
view. Still, with a similar performance but lower complexity
compared to POSE, this scheme could be preferred for some
applications: the visual similarity can confidently be used
as a proxy for the position if computing the camera poses is
impractical.

For K = 1, RAND, TEMP and SIM are perfectly equiva-
lent: all views are aggregated together using a single FV. The
difference for POSE is that the views considered invalid after
the SfM stage are dropped. This only changes the mAP in a
negligible way, which confirms that the frames dropped do not
contribute to useful information for an object.

The best gains for POSE and SIM compared to the other
schemes are obtained for K = 4, as reported in Table 2 for

Method 128 Gauss. 256 Gauss. 512 Gauss.

INDEP 37.79% 38.75% 43.75%
RAND 56.68% 62.51% 63.04%
TEMP 58.86% 64.34% 66.36%
SIM (ours) 66.58% 70.65% 72.69%
POSE (ours) 64.63% 69.40% 72.98%

Table 2: Best results for a fixed database size constraint. We compare the mAP for a
fixed value K = 4. Note that the values reported for 512 Gaussians are the same as
those reported in Fig. 2.

different numbers of Gaussians used for the FVs. The mAP
for our proposed approaches is typically boosted by 60 to 80%
compared to INDEP. The benefits of aggregating views in a
non-naive way are also the most striking for this value of K:
for all number of Gaussians, aggregating views using POSE
or SIM allows for a 8 to 10 p.p. mAP boost compared to the
random aggregation. Another way to interpret our results is
that our proposed approaches reach a similar retrieval accu-
racy level compared to other schemes while using a smaller
database index: when using 512 Gaussians a mAP of 71% can
be achieved with a 10× smaller database for POSE or SIM
(K = 4) compared to the naive INDEP scheme (K = 40). Even
TEMP does not reach this accuracy target until K = 16, i.e.,
obtaining 4X more memory-efficient index. This is crucial for
mobile visual search applications where part of the database
may be stored on a memory-constrained mobile device [4].

4. CONCLUSIONS

This work explores the task of 3D object retrieval in the context
of mobile visual search, where index compression and retrieval
speed are critical. We propose two methods to efficiently
represent manually captured videos of objects. Using large-
scale experiments, we show that our approaches outperforms
other representations based on FV aggregation.
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