

EFFECTIVE FISHER VECTOR AGGREGATION FOR 3D OBJECT RETRIEVAL

Jean-Baptiste Boin* (jbboin@stanford.edu), André Araujo*, Lamberto Ballan†*, Bernd Girod*
*Department of Electrical Engineering, Stanford University, USA, †Media Integration and Communication Center, University of Florence, Italy

In a nutshell...

- 3D object retrieval
 - Database: videos of objects captured manually from different viewpoints
 - Query: single **image**.
- Videos are represented as K Fisher vectors (FV)
 aggregating information from different viewpoints.
- Two proposed frame aggregation methods are shown to considerably outperform standard techniques (with or without frame aggregation) on large-scale experiments using an existing video dataset.

Overview of the system

References

- [1] S. Choi, Q.-Y. Zhou, S. Miller, and V. Koltun, "A large dataset of object scans," arXiv:1602.02481, 2016.
- [2] A. Araujo, J. Chaves, R. Angst, and B. Girod, "Temporal Aggregation for Large-Scale Query-by-Image Video Retrieval," in Proc. ICIP, 2015.

View aggregation methods

Results of the view aggregation on one video sequence

- The frames are visually similar within a cluster for POSE and SIM
- The distribution is more noisy for SIM

Baselines

Evaluation

(K: number of FVs per video, proportional to the size of the database)

FVs are generated with 512 Gaussians

Method	128 Gaussians	256 Gaussians	512 Gaussians	
INDEP	37.79%	38.75%	43.75%	
RAND	56.68%	62.51%	63.04%	
TEMP	58.86%	64.34%	66.36%	
SIM (ours)	66.58%	70.65%	72.69%	
POSE (ours)	64.63%	69.40%	72.98%	

mAP for a fixed value of K (K=4)

- For K = 4 (fixed database size), the boost in the mAP is significant when using SIM or POSE compared to naïve aggregation schemes.
- With 512 Gaussians, 71+% mAP target achieved for:
 - K = 4 for POSE and SIM
 - K = 40 for INDEP (10X compression)
 - K = 16 for TEMP (4X compression).