
Efficient Panorama Database Indexing
for Indoor Localization

Jean-Baptiste Boin
Stanford University
Stanford, CA, USA
jbboin@stanford.edu

Dmytro Bobkov
Technical University of Munich

Munich, Germany
dmytro.bobkov@tum.de

Eckehard Steinbach
Technical University of Munich

Munich, Germany
eckehard.steinbach@tum.de

Bernd Girod
Stanford University
Stanford, CA, USA
bgirod@stanford.edu

Abstract—We consider the task of indoor localization in large-
scale environments using visual search on a database of geo-
tagged panoramas. In this work we propose an efficient way
to represent the database so as to maximize the search accuracy
while minimizing the amount of computation required per query.
The success of our method is due to a combination of (i) a
hierarchical indexing method based on panorama image region
information, and (ii) image descriptors aggregated from multiple
views sampled finely over the panorama using generalized max
pooling (GMP). Experiments on a large indoor dataset show that
the complexity is reduced compared to common state-of-the-art
retrieval methods such as FLANN (Fast Library for Approximate
Nearest Neighbors): our scheme is more than twice as fast as an
index based on FLANN while maintaining a similar retrieval
performance.

Index Terms—indoor localization, visual search, image re-
trieval, panoramic images, hierarchical search

I. INTRODUCTION

Indoor positioning is important for applications such as au-
tonomous navigation in robotics or augmented reality. Because
other localization techniques such as GPS may fail indoors,
there has been considerable interest in visual localization,
which consists of localizing an image query in a given environ-
ment using only its visual information. The main approaches
for this task either use 3D structure or 2D images.

Localization using 3D structure uses 3D geometry to
perform 6-degrees-of-freedom (6DOF) pose estimation with
high precision [1]–[5]. Local features extracted from the query
are matched against a 3D point cloud built from a collection of
images. Getting enough matches can be especially challenging
for indoor scenes that contain large flat areas and repetitive
structures, as was pointed out in [6]. Moreover, getting a good
quality 3D reconstruction of the scene is not an easy task for
some geometries [6] and scaling to large-scale 3D models is
still a real challenge.

Localization using 2D images is illustrated for example in
[7]–[9]. Using a database of localized images, the query pose is
approximated by using the pose of the most similar image(s).
By trading off localization accuracy for increased speed and
robustness, these approaches present many advantages over
3D-based localization. Indeed, image retrieval can be made
very efficient by using global descriptors that make images

1Research update

View
sampling

Descriptor
pre-processing

Descriptor
extraction

Indexing

Fig. 1. Overview of the database-side processing of our localization system.

easy to match by visual similarity. These global descriptors can
be built from sparse [10], [11] or dense [8] local descriptors,
or be learned [7], [12], and are designed to be robust to a wide
set of conditions (time of the day, lighting, etc.). The 2D-based
solution is preferred for many applications that do not require
a highly accurate pose and have to work with constrained
computational resources, e.g., localization on a mobile phone.
Even if 6DOF pose is desired, such a system is still very useful
to limit the search space as it can easily be combined with a
pose estimation step with the retrieved images.

Our work is among these latter methods and focuses on
databases of panoramic images. Some existing approaches
like NetVLAD [7] design discriminative descriptors while
other works, such as [8], improve performance by adding
synthetic views to the database, echoing previous work by
[13] on non-panorama images. The asymmetry between the
omni-directional database images and the limited field-of-view
queries is typically tackled by representing each panorama
with the descriptors extracted from views sampled from that
panorama, which may not be optimal. How to adequately
represent a panorama gives rise to questions that have not
been studied sufficiently and our work attempts to bridge this
gap.

Given a set of panorama images captured densely in a set of
buildings, we propose a way to build discriminative descriptors
and index them for efficient retrieval. Similar in spirit to [14]
that explored how to compactly represent a 3D object for
retrieval, we show that performance is highly dependent on
a good database representation. Our contributions are the
following. (1) We speed up the search by introducing a hierar-
chical index based on the location and orientation of the views
and show that it outperforms a comparable commonly used978-1-7281-4673-7/19/$31.00 ©2019 IEEE

4Research update

elevation

azimuth

30�

0�

-30�

0� 90� 180� 270�
Fig. 2. View sampling for NH = 4 and NV = 3. The full database is
represented as (4, 3). The aggregated (2, 3) database aggregates the views
in each box, while the sub-sampled (2, 3) database only keeps the views
with a dashed outline while discarding the others. Both yield a database of 6
descriptors per panorama.

index based on descriptor statistics. (2) We perform systematic
evaluation of view sampling and aggregation, showing that fine
sampling of the panoramas followed by descriptor aggregation
is preferred to coarse sampling, and that pooling descriptors
using generalized max pooling (GMP) [15] is superior to mean
pooling, thus confirming the use of GMP for aggregation
in other works [16], [17]. The source code for this work is
publicly available1.

II. METHODS

A. System design
Our system pipeline for the database-side processing is

shown in Fig. 1. The retrieval method we use is based on
high-dimensional global image descriptors. We extract limited
field-of-view images from a panorama by sampling its viewing
sphere with a regular pattern. The orientations of the views
are obtained by regularly sampling NV elevation angles in
an interval [−α,+α] and NH azimuth angles in the interval
[0◦, 360◦). For each orientation, we then render a view using a
fixed field-of-view and aspect ratio. This yields a total database
comprising NP ·NV ·NH views, where NP is the number of
panoramas. The rationale behind sampling views instead of
directly extracting descriptors from the panoramas is that we
want to maximize the similarity between the descriptors in the
database and the descriptors for potential queries. Since the
queries are limited field-of-view images, it is logical to render
limited field-of-view images from the panoramas, using typical
camera parameters that we could expect to see in queries.
For similar reasons, in practice we would typically use a high
sampling rate to extract these views, meaning that neighboring
views would have considerable overlap. This is also done to
maximize the similarity between potential queries and the best
matching database view.

We then compute one image descriptor for each view.
Next we center and L2-normalize the set of descriptors. We
observed that this step is important for high performance. The
next stage is the descriptor pre-processing stage, the goal of
which is to decrease the number of descriptors in our database.
This stage will be described in the next sub-section. Finally,

1https://github.com/jbboin/panorama-indexing-localization

we store the pre-processed dataset into an index that allows
for fast retrieval. All these steps are performed offline.

At query time, we extract the query descriptor, center it
using the dataset mean, L2-normalize it and query our index.
From this we get a ranked list of the database panoramas,
which hopefully contains the spatially nearest panoramas at
the top of the list.

B. Descriptor pre-processing
We consider two options: descriptor sub-sampling and

descriptor aggregation. Both approaches are parameterized
using two values, (nh, nv), corresponding to the number of
descriptors we use in the horizontal and vertical direction
respectively (we ensure that NH and NV are multiples of
nh and nv respectively). For descriptor sub-sampling we only
keep the view descriptors corresponding to an equally spaced
subset of nh azimuth angles and nv elevation angles, and
we discard the others. For descriptor aggregation we divide
the azimuth angle and elevation angle intervals into nh and
nv intervals and for each horizontal/vertical interval pair we
pool the descriptors associated to these views into a single
descriptor (Fig. 2). After this stage the database size is reduced
to NP · nh · nv descriptors.

On the one hand, low values of nh and nv reduce both the
size of the database and the redundancy among descriptors,
which helps to accelerate search. On the other hand, too
low values may decrease the similarity between a query and
the most similar database descriptor, making the search task
harder and decreasing the overall performance. By carefully
choosing these values we can explore the trade-off between a
fast or accurate search. Our experiments show that descriptor
aggregation offers a much better trade-off than descriptor sub-
sampling.

We aggregate the descriptors from multiple images into one
with generalized max pooling (GMP) [15]. We consider the
input descriptors x1, ..., xn ∈ Rd (where d is the dimension of
the descriptors), stacked as columns of the matrix X ∈ Rd×n.
We get the aggregated output with the formulation used in
[17]:

GMP(X) = X(XTX + λIn)
−11n

where λ is a regularization parameter, commonly chosen as
λ = 1. Unlike the original formulation [15] that requires
inverting a d× d matrix, this only requires the inversion of a
n × n matrix, which is beneficial because in general n � d.
GMP was introduced so that the similarity between GMP(X)
and each xi is close to a constant, which ensures that each
input is well represented in the combined descriptor. We show
in our experiments that GMP is usually a better choice than
the more commonly used mean-pooling (MP).

C. Hierarchical indexing
We introduce two types of hierarchical indexes to store

our descriptors. The first one (data-based hierarchy or DBH)
is purely based on the statistics of the descriptors, while
the second one (geometry-based hierarchy or GBH) is based
on geometric characteristics of the views (orientation of the

https://github.com/jbboin/panorama-indexing-localization

views, as well as position of the panoramas). We also compare
the performance with linear indexes as our baseline.

1) Data-based hierarchy: This index is a k-means tree that
is directly based on the FLANN (Fast Library for Approximate
Nearest Neighbors) indexing approach [18], with some minor
modifications. The tree is based on a branching factor B.
The child nodes of the root are obtained by clustering the
descriptors using k-means with B clusters. We then repeat the
process recursively for each cluster until each cluster contains
less than B descriptors. Each node of the tree corresponds to a
cluster and is represented by a single descriptor that aggregates
all descriptors in that cluster. The tree may not be balanced.

There are two modifications we add to the FLANN algo-
rithm. Both modifications involve the way we compute the
internal node descriptors from the set of input descriptors
that are included in the corresponding cluster. First, we L2-
normalize these internal node descriptors. This leads to a
big difference in the performance of the index, especially
because the input descriptors have unit norm. At retrieval
time, when comparing a query descriptor to an internal node
descriptor, our modified version of FLANN will thus compute
the Euclidean distance between normalized descriptors. The
second modification is that we aggregate the descriptors within
a cluster by using GMP instead of MP.

2) Geometry-based hierarchy: The idea behind this tree
structure is to hierarchically aggregate the descriptors ac-
cording to their semantic content, which is correlated to the
visibility information. This is done by aggregating descriptors
with their neighbors in camera position space (not in descriptor
space). This prevents from aggregating visually similar de-
scriptors that could be in very different scene locations. As
we get closer to the root, each level of the tree corresponds to
an increasing amount of content aggregation.

In practice, we build the GBH tree by considering a se-
quence of aggregated databases: (n

(i)
h , n

(i)
v), i = 0..L − 1,

where we ensure that the values are such that n(i)h (resp. n(i)v)
divides n(i+1)

h (resp. n(i+1)
v). The first level will contain all

NP · n(0)h · n
(0)
v descriptors of the (n

(0)
h , n

(0)
v) database. Level

i+1 is built from level i as follows. Because of the divisibility
conditions, each descriptor from the (n

(i+1)
h , n

(i+1)
v) database

can be associated to one and only one descriptor from the
(n

(i)
h , n

(i)
v) database by looking at the subset of views it

aggregates, and will become one of its children nodes in the
tree. We note such a hierarchy as: (n(0)h , n

(0)
v) > (n

(1)
h , n

(1)
v) >

... > (n
(L−1)
h , n

(L−1)
v). An illustration is given in Fig. 3.

If we only perform intra-panorama aggregation as we just
described, the first level of the hierarchy will grow linearly
with NP . This would lead to poor scalability. Hence we also
perform inter-panorama aggregation over spatial units using
extra semantic information from our dataset. An example of
inter-panorama levels would aggregate the panoramas into
rooms, then the rooms into buildings, etc. Fixing the hierarchy
for this tree is akin to picking a branching factor in the DBH.

By exploiting additional information, the GBH is expected
to have several advantages over the DBH. First, visually

4Research update

(1,1)

(2,1)

(4,1)
Fig. 3. GBH tree structure for the hierarchy (1, 1) > (2, 1) > (4, 1) with
NP = 2. For illustration purposes we only consider horizontal aggregation.
Each square represents an aggregated descriptor and its associated circular
sector represents which view descriptors are aggregated. Different colors
correspond to different panoramas.

distinct parts of a scene that would appear in neighboring
database views may be captured by the same query, so it
should help to aggregate such views together, independently
of their content. The GBH is also more balanced which entails
that the panorama locations are more evenly distributed in the
tree. Finally, the GBH is easy to edit. Adding or removing a
building or a room consists solely of appending or removing
a child sub-tree to the root node. This feature is essential for
applications where GPS or other techniques are first used to
narrow the search down to a few candidate buildings out of
many.
D. Index search

Once the index is built, we want to search it with a query
descriptor in order to rank all the panoramas by likelihood of a
match. The first part of the process is identical to the nearest-
neighbor search used in FLANN: starting from the root, we
compute the distance between the query and the descriptors
representing each child node. We continue the tree traversal
with the node that gets the lowest distance, while other nodes
are put in a priority queue. That queue keeps track of the
unexplored branches by increasing distance to the query, and
is used when reaching the end of a branch to get the next
one to explore. This is repeated until a fixed number of leaf
nodes k is visited. The cost of the search is dominated by
the distance computations between the query and each visited
node descriptor. This traversal strategy ensures that each node
is only explored once so at most (when k is the size of the
database) the number of distance computations is equal to the
number of nodes in the tree (subtract the root). Pushing the
exploration to this extreme would obviously make the cost
higher than a linear search given that there is some extra
overhead due to the internal nodes. But in practice we usually
reach a performance on par with linear search even with values
of k that are considerably lower, which makes the whole search
much faster. Adjusting k allows us to explore the trade-off
between search cost and search performance.

After retrieving k database descriptors, we re-rank them by
increasing distance. This is sufficient for FLANN because the
goal is only to find the nearest neighbors to the query. In
our case two extra steps are needed. First, we are retrieving
panoramas, not database descriptors, so a conversion from a
list of descriptors to a list of panoramas is required. Since the
pre-processing stage never aggregates image descriptors across

distinct panoramas, each descriptor at the output of the pre-
processing stage is only associated to one panorama, so there
is a natural mapping. We remove duplicates by only keeping
the first occurrence of each panorama in our list. Second,
we want to rank all panoramas but if k is not large enough,
we may not have visited them all and we may have missed
relevant panoramas. We can complete the list with no extra
distance computation cost by using the priority queue from
the traversal and pulling nodes one by one. Each node can
be associated to several panoramas that we can easily order
by decreasing number of occurrences in the associated set of
database descriptors. We then add the non-retrieved panoramas
to our ranked list in order.

III. EXPERIMENTS

A. Datasets and evaluation
Datasets: The WUSTL (Washington University in St. Louis)

Indoor RGBD dataset [19] contains 129 geo-localized panora-
mas captured in a large building with a panorama scanner.
It was extended with the InLoc dataset [20], which includes
329 realistic queries captured in the same building with a
smartphone at a different time and months after the capture of
the panoramas. InLoc also provides 6DOF manually verified
poses for all queries.

To study the effects of retrieval on a large dataset, we
extend the dataset with additional distractor panoramas. The
Matterport3D dataset [21] contains panoramas captured with
the Matterport Pro Camera in 90 different buildings and
that are accurately localized in a reference coordinate sys-
tem. Room segmentation was also performed, so that each
panorama is associated with a room label, which is useful for
the GBH index. Because of practical memory limitations, we
only include 5 of those buildings, which corresponds to an
extra 632 panoramas divided in 114 rooms.

The WUSTL dataset has the following issue: it contains
two non-independent image sets, DUC1 and DUC2, that
correspond to the first and second floor of the building, and
that are not accurately aligned to one another. Each query is
registered either in one or the other coordinate system (DUC1
contains 49 panoramas and 198 queries; DUC2 contains 80
panoramas and 131 queries). We bypass this problem by
evaluating these query sets independently: the DUC1 (resp.
DUC2) queries are evaluated on a dataset that combines the
DUC1 (resp. DUC2) panoramas and the distractor panoramas.
We then average our reported metrics across all queries.

Details on system design: The image descriptor we use
is the 2048-dimensional descriptor from [12]. It is based on
a convolutional neural network and achieves state-of-the-art
results on image retrieval benchmarks. Because our approach
is agnostic to the type of global descriptor, we use the pre-
trained descriptor network as it is without fine-tuning it.
Clearly, fine-tuning the network on a specific dataset would
improve performance, but we are interested in a practical
scenario where the network is often used as is in order not
to limit the generalization property.

102 103 104 105

#descriptor comparisons

30

32

34

36

38

40

42

m
AP

 (%
)

(4,3)

(8,3) (12,3) (16,3)

(24,3) (48,3)

(4,1)

(8,1)
(12,1)

(16,1)
(24,1)

(48,1)

(1,3)

(2,3)

(4,3)

(8,3) (16,3) (24,3)(48,3)

(1,1) (2,1)

(4,1)
(8,1)

(16,1) (24,1) (48,1)

Sub-samp. (H)
Sub-samp. (H+V)
Aggr. (H, GMP)
Aggr. (H, MP)
Aggr. (H+V, GMP)
Aggr. (H+V, MP)

Fig. 4. Search performance (mAP) vs. number of descriptor comparisons
for different aggregation and sampling modes using linear search. Condition
H (resp. H+V) correspond to sub-sampling or aggregation on the horizontal
direction only (resp. on both horizontal and vertical directions). The param-
eters (nh, nv) are shown for each point. We also compare aggregation with
different pooling methods (MP, GMP). The black dashed line indicates the
value of the baseline mAP.

For panorama sampling, we use NH = 48 and NV = 3,
which gives 144 views per panorama. The views are rendered
at a resolution of 640×480 px and with a focal length of 350
px. The horizontal (resp. vertical) field-of-view is 85◦ (resp.
69◦), which are typical values found in smartphone cameras.

Ground truth and evaluation: As is common for retrieval
systems, we use mean average precision (mAP) as a perfor-
mance metric. If the recognized location is simply the vantage
point of the most similar panorama, the most natural criterion
would be top-1 accuracy. But, as mentioned previously, our
retrieval could be followed by a more complex pose estimation
step that would process the most promising candidates only.
Thus, even if the nearest panorama is not retrieved at the very
top of the list, it is still useful. The mAP metric is a good
proxy to evaluate the quality of the retrieved ranked list.

In order to perform the evaluation with mAP we first need to
define the ground truth for query-panorama pair matches. We
consider that matching panoramas are within a certain distance
threshold t of a query. This criterion may give false positives
by matching panoramas and queries located in different rooms.
We avoid this by performing room segmentation using a
system similar to [22]: the point cloud provided by the dataset
is segmented into rooms based on the free space criterion
utilizing potential field. We use the room correspondence as
a second criterion for a match. In the end, the ground truth
matches are defined as the panoramas that are in the same
room as the query and within a distance t = 10m from it.

For retrieval speed quantification, we observe that the re-
trieval time is dominated by the distance computations, hence
we can use the average number of distance computations (also
the average number of descriptors from our index that we
access per query) as a metric.
B. Descriptor pre-processing

We compare descriptor pre-processing conditions using ex-
haustive search (Fig. 4) for different values of (nh, nv). The
mAP value reached without pre-processing ((48, 3) database)

102 103 104 105

#descriptor comparisons

30

32

34

36

38

40

42

m
AP

 (%
)

Linear search
DBH, B = 64
DBH, B = 128
DBH, B = 256
DBH, B = 512
DBH, B = 1024
FLANN, B = 32

Fig. 5. Search performance of the DBH index for various values of the
branching factor B as well as the performance of the FLANN index. The
reference plot for linear search corresponds to the trade-off obtained with
horizontal aggregation. The black dashed line indicates the value of the
baseline mAP.

is, as expected, among the best: 39.73%. This value will be
called the baseline mAP. Our objective is to keep the mAP as
close as possible to this value while minimizing the number of
descriptor comparisons. Aggregation offers a better trade-off
because the database can be considerably reduced without a
significant mAP drop: the aggregated database (8, 3) gives an
mAP almost equal to the baseline mAP with a 6× database
size reduction. Meanwhile horizontal sub-sampling by any
factor larger than 2 causes a noticeable mAP drop. Finally,
it is interesting to point out that the best results are obtained
when we only perform aggregation in the horizontal direction,
although it comes at an extra cost in the number of descriptors.

Another observation is that both pooling methods perform
similarly when few descriptors are aggregated (right part of the
plot). However, GMP outperforms MP when many dissimilar
descriptors are aggregated, for example for (1, 1) when all
descriptors from a panorama are aggregated. This insight is
critical for our hierarchical indexes, because the quality of the
search is highly dependent on the first levels of the hierarchy,
where large amounts of aggregation occur.

We saw that for exhaustive linear search, the best perfor-
mance trade-off is obtained when pre-processing the database
with aggregation, using GMP as the aggregating method.

C. Evaluation of indexing methods
In this section we will now study the influence of the choice

of indexing method on the performance trade-off.
1) DBH: Here we first evaluate the DBH index without

any pre-processing, i.e. on the full (48, 3) database, for var-
ious values of branching factor B. This is compared with
the original FLANN implementation, also without any pre-
processing. FLANN depends on the parameter B as well but
in order not to overload the plot, we only report the results
obtained with the best performing value of B. Finally, we also
show for reference the best trade-off obtained in the previous
section with linear search (i.e., aggregation on the horizontal
direction only with GMP). The latter is the only one where
pre-processing is performed. Results are shown in Fig. 5.

102 103 104 105

#descriptor comparisons

30

32

34

36

38

40

42

m
AP

 (%
)

room > (1,1) > (2,1) > (4,1) > (8,1) > (8,3)
room > (1,1) > (4,1) > (8,3)
room > (1,1) > (8,3)
room > (1,1) > (4,1) > (4,3)
room > (1,1) > (4,1) > (48,3)
DBH

Fig. 6. Search performance of the GBH index for various hierarchies, as well
as the best values obtained for the DBH index for reference. The black dashed
line indicates the value of the baseline mAP.

As we can see, the modifications to FLANN are critical for
our task: the unmodified FLANN tree is even outperformed by
linear search, but after modifications (DBH index) we obtain a
performance trade-off that is much better. This justifies the use
of a hierarchy. The best results are obtained for DBH with a
branching factor of 512. Another interesting observation is that
the DBH curves rise fast: a performance close to the baseline
mAP is obtained with a small number of leaf nodes. The mAP
is even higher than the baseline mAP in some cases, although,
as expected, the mAP drops back to the baseline value when
the number of leaf nodes explored increases.

Evaluation of the DBH index with pre-processing is not
shown because we found that it did not help for that index.

2) GBH: For GBH evaluation, we consider a hierarchy
with one inter-panorama level: room level aggregation. The
distractor dataset already provides room segmentation. For the
WUSTL dataset, we do not use the complex segmentation
algorithm mentioned previously (we only use it to compute
the ground truth matches). This is because it produces much
larger rooms than the ones in the distractor dataset, and it
requires 3D reconstruction of the building, which in general
is not available. Instead, in order to keep the dataset con-
sistent (rooms of similar size), we aggregate the panoramas
by clustering their position with k-means, which is simpler.
The number of rooms is chosen so that the average distance
between a panorama and the associated centroid is the same as
for the distractor dataset. This results in 25 rooms for DUC1
and 37 for DUC2. Using our insights from part III-B, at each
level aggregation is performed with GMP instead of MP.

Fig. 6 compares hierarchies with different branching factors
for the intra-panorama levels (first 3 curves) and different last
levels (curves 2, 4 and 5), as well as the best DBH index as
reference. The depth of the GBH tree can directly be obtained
by counting the levels in the hierarchy. Two observations
can be made from this comparison. First, comparing the
performance with different last levels shows that the (8, 3)
aggregated database as the last level of the hierarchy gives the
best trade-off. This confirms what we observed with the linear
index: the (8, 3) database is descriptive enough to keep the

TABLE I
LOWEST AVERAGE NUMBER OF DESCRIPTOR COMPARISONS PER QUERY

REQUIRED TO GET WITHIN 0.5% OR 1% OF THE BASELINE mAP. THE
VALUE IN RED CORRESPONDS TO THE SPEEDUP RATIO: THE FACTOR BY
WHICH THE NUMBER OF DESCRIPTORS IS REDUCED COMPARED TO THE

LINEAR SEARCH WITH SUB-SAMPLING BASELINE.

Target mAP

Method 38.73% (-1%) 39.23% (-0.5%)

GBH 302 (165×) 374 (133×)
DBH 778 (64×) 778 (64×)
Aggreg., linear search 8320 (6×) 16640 (3×)
Sub-samp., linear search 49921 49921

retrieval performance high, while still giving impressive speed
gains. Using the (48, 3) database as the last stage slows down
the process because more redundant descriptors are explored,
while using (4, 3) gives a good performance early on but the
mAP converges to a lower value. Second, the hierarchy is
not too sensitive to the branching factor used for the intra-
panorama stages. A value around 4 or 6, like in the hierarchy
room > (1, 1) > (4, 1) > (8, 3) exhibits good performance.

Our results are summarized in Table I. Switching from linear
search to a hierarchical index brings the most impressive gains,
but we note that our GBH index outperforms a purely data-
based approach: we get within 0.5% of the baseline mAP with
only half the number of comparisons.

D. Other retrieval methods

Instead of reducing the number of descriptors compared per
query, other techniques such as product quantization (PQ) [23]
may lead to lower search complexity by approximating the
distance computations. Here we justify that such an approach
may not give optimal performance for this task.

PQ introduces two techniques: ADC and IVFADC. For
ADC, the number of operations is proportional to Nm, where
N is the number of descriptors in the database and m the
number of quantizers. As a rough estimation, we consider that
for GBH the cost of each descriptor comparison is d opera-
tions, the dimension of the descriptors, so our method reaches
0.5% of the baseline mAP with only 7.67e5 operations. This
is to be compared with the values in Table II, obtained with
the FAISS implementation of PQ [24]. The PQ approximation
degrades our search performance too much to be acceptable.
In order to get within 0.5% of the baseline mAP we need to
use 1024 quantizers, which is almost as high as d, and this
considerably decreases any possible speed benefit. IVFADC
improves on ADC by only searching part of the index but it
still relies on the same approximation as ADC so even though
complexity will decrease, it will still be necessary to keep a
high number of quantizers, which defeats the purpose of PQ.
Although more work would be needed to explore how PQ
could be modified for this task, we believe that at the moment
our hierarchical search is among the most suitable techniques,
but future work could explore how the ideas from PQ could
benefit our index.

TABLE II
NUMBER OF OPERATIONS (#OP.) AND mAP OBTAINED WITH PQ FOR

DIFFERENT NUMBERS OF QUANTIZERS m.

m 32 64 128 256 512 1024 2048

#op. 3.19e6 6.39e6 1.28e7 2.56e7 5.11e7 1.02e8 2.04e8

mAP 29.65 33.56 34.95 37.69 38.58 39.41 39.70

IV. CONCLUSIONS

In this work, we proposed an efficient representation of a
database of indoor panoramas which can be used for image-
based positioning in indoor environments. We represent each
panorama by finely sampling views, extracting global descrip-
tors and aggregating them into a smaller set of descriptors.
These descriptors are then indexed by our novel structure
(GBH) which uses additional information like view orientation
and panorama location instead of descriptor statistics as is the
case for other common methods. Internal nodes are represented
using aggregation with GMP, which is shown to be superior to
MP when dissimilar descriptors are aggregated. Experimental
results on a large panorama dataset showed that hierarchical
search with this index drastically accelerates the process while
keeping the mAP unchanged: we could reach a performance
similar to a brute-force method where descriptors from all
sampled views are accessed (only a 0.5% mAP drop) by
only comparing 374 descriptors per query on average, which
corresponds to a 133-fold decrease in complexity. This is also
better than another common hierarchical index approach based
on FLANN (2-fold decrease in complexity).

By using only existing panorama locations that may not
be uniform across the space, the index introduced in this
work presents a disconnect between the intra-panorama and
inter-panorama stages. The former have some regularity (same
number of views per aggregated descriptor or per panorama)
that the latter lack (aggregation at the “room” level is not
guaranteed to involve a constant number of panoramas) and
it could be interesting to see whether this affects the search
performance. An approach like [8] could bridge this discon-
nect, by rendering synthetic panoramas regularly sampled on
a grid that could then be aggregated in our index to make it
more balanced. This could be the subject of future work.

REFERENCES

[1] T. Sattler, B. Leibe, and L. Kobbelt, “Efficient & effective prioritized
matching for large-scale image-based localization,” IEEE Transactions
on Pattern Analysis & Machine Intelligence, 2017.

[2] Y. Li, N. Snavely, D. Huttenlocher, and P. Fua, “Worldwide pose
estimation using 3D point clouds,” in ECCV, 2012.

[3] Y. Li, N. Snavely, and D. P. Huttenlocher, “Location recognition using
prioritized feature matching,” in ECCV, 2010.

[4] L. Svärm, O. Enqvist, F. Kahl, and M. Oskarsson, “City-scale localiza-
tion for cameras with known vertical direction,” IEEE Transactions on
Pattern Analysis & Machine Intelligence, 2017.

[5] T. Sattler, B. Leibe, and L. Kobbelt, “Fast image-based localization
using direct 2D-to-3D matching,” in ICCV, 2011.

[6] F. Walch, C. Hazirbas, L. Leal-Taixe, T. Sattler, S. Hilsenbeck, and
D. Cremers, “Image-based localization using lstms for structured feature
correlation,” in ICCV, 2017.

[7] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, “NetVLAD:
CNN architecture for weakly supervised place recognition,” in CVPR,
2016.

[8] A. Torii, R. Arandjelovic, J. Sivic, M. Okutomi, and T. Pajdla, “24/7
place recognition by view synthesis,” in CVPR, 2015.

[9] T. Sattler, A. Torii, J. Sivic, M. Pollefeys, H. Taira, M. Okutomi, and
T. Pajdla, “Are large-scale 3D models really necessary for accurate
visual localization?,” in CVPR, 2017.

[10] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local
descriptors into a compact image representation,” in CVPR, 2010.

[11] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and C. Schmid,
“Aggregating local image descriptors into compact codes,” IEEE
Transactions on Pattern Analysis & Machine Intelligence, 2012.

[12] A. Gordo, J. Almazan, J. Revaud, and D. Larlus, “End-to-end learning
of deep visual representations for image retrieval,” International Journal
of Computer Vision, 2017.

[13] R. Huitl, G. Schroth, S. Hilsenbeck, F. Schweiger, and E. Steinbach,
“Virtual reference view generation for CBIR-based visual pose estima-
tion,” in ACM Multimedia, 2012.

[14] J.-B. Boin, A. Araujo, L. Ballan, and B. Girod, “Effective Fisher vector
aggregation for 3D object retrieval,” in ICASSP, 2017.

[15] N. Murray and F. Perronnin, “Generalized max pooling,” in CVPR,
2014.

[16] R. Sicre and H. Jégou, “Memory vectors for particular object retrieval
with multiple queries,” in ICMR, 2015.

[17] A. Iscen, G. Tolias, Y. Avrithis, T. Furon, and O. Chum, “Panorama to
panorama matching for location recognition,” in ICMR, 2017.

[18] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration.,” VISAPP, 2009.

[19] E. Wijmans and Y. Furukawa, “Exploiting 2D floorplan for building-
scale panorama RGBD alignment,” in CVPR, 2017.

[20] H. Taira, M. Okutomi, T. Sattler, M. Cimpoi, M. Pollefeys, J. Sivic,
T. Pajdla, and A. Torii, “InLoc: Indoor visual localization with dense
matching and view synthesis,” in CVPR, 2018.

[21] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva,
S. Song, A. Zeng, and Y. Zhang, “Matterport3D: Learning from RGB-D
data in indoor environments,” 3DV, 2017.

[22] D. Bobkov, M. Kiechle, S. Hilsenbeck, and E. Steinbach, “Room
segmentation in 3D point clouds using anisotropic potential fields,” in
ICME, 2017.

[23] H. Jégou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE Transactions on Pattern Analysis & Machine
Intelligence, 2011.

[24] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with GPUs,” arXiv preprint arXiv:1702.08734, 2017.

	Introduction
	Methods
	System design
	Descriptor pre-processing
	Hierarchical indexing
	Data-based hierarchy
	Geometry-based hierarchy

	Index search

	Experiments
	Datasets and evaluation
	Descriptor pre-processing
	Evaluation of indexing methods
	DBH
	GBH

	Other retrieval methods

	Conclusions
	References

