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Indoor Localization

= Task: panorama retrieval using a
single query image

= (Goal is fast coarse localization; can ‘ r|
be used as a first pass for a more ¥ ‘
complex fine localization system ‘

= Query/database asymmetry
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Retrieval with descriptor aggregation

WHAT DESCRIPTORS to aggregate?

WHAT AGGREGATION METHOD to use?

HOW TO USE aggregated descriptors?
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Contributions

= Systematic evaluation of view sampling and aggregation

» Fine sampling of panoramas + descriptor aggregation is preferred to
coarse sampling

» Pooling descriptors with Generalized Max Pooling (GMP) is superior
to mean pooling

= Speed up search with hierarchical index based on the location and
orientation of the views
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Background — Image representation

= Traditional pipeline: hand-crafted features

» Local patch representation: SIFT [Lowe, '04]

> Global descriptor:
« Bag of Words (BoW) [Sivic et al., '03]

* Fisher Vectors [Perronnin et al., '07]

= CNN-based features
> Representations extracted from networks trained on other tasks

> Can be fine-tuned for improved results
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Background — Descriptor aggregation

= Generalized max-pooling (GMP) [Murray et al., *14]

» Increased similarity to ALL descriptors
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Background — Indexing and search
= Task: Nearest Neighbor (NN) search

» Database: X = {x, ..., xy}, with x; € R?, ||x;]|* = 1

> Query: g € RY, ||ql|? =

» Find i that maximizes q"x;

» Exhaustive search: O(Nd)
= High dimensional exact NN search is hard

> When d = 10, no gains compared to exhaustive search [Weber et al., '98]
=  Approximate Nearest Neighbor (ANN) techniques:

» Space-partitioning techniques: FLANN [Muja et al., "14]
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System design

View
sampling
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View sampling

= Rationale: higher similarity
when matching with limited
FoV queries

= Vertical sampling
» Sampled at elevations -30°,
0o, 30°
= Horizontal sampling

> Sampling rate of 48 (step =
7.5°)

> Considerable overlap
between views 90°

= 144 views per panorama

30°
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System design

Descriptor
extraction

2l Technical University of Munich Stanford University



Descriptor extraction

Sampled view Image descriptor

Deep Image Centering +

Retrieval L2-

[Gordo et al., '16] normalization
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Evaluation

= Similarity between query and database descriptors computed from L2
distance (order is equivalent to cosine similarity)

= Convert list of views to list of panoramas by keeping the first occurrence
of each panorama

= Evaluate average precision for the query
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Datasets

= WUSTL Indoor RGBD dataset
[Wijmans et al., '17]
» 129 geo-localized panoramas
captured in a university
building

= Matterport3D dataset
[Chang et al., '17]

> Used as distractors
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Datasets

= |nLoc dataset [Taira et al., '18]
» 329 queries

> Same building as the
WUSTL dataset

» Captured at a different time
and on a different camera
(iPhone)

» 6DoF manually verified
reference poses

= Total of 693 panoramas per
query
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Results (baseline)

Faster search

<€

42 1 @ Baseline (all sampled views, exhaustive search)

Higher
accuracy
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System design
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Descriptor pre-processing

= Rationale: reduce effective size of database (humber of descriptors
compared per query) while keeping the performance high

Sub-sampling Aggregation
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Descriptor pre-processing

elevation
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Descriptor pre-processing
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Descriptor pre-processing

elevation
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Descriptor pre-processing

elevation
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Descriptor pre-processing

elevation

0° 90° 180° 270° azimuth
Sub-sampling (8,1)

v<ll Technical University of Munich Stanford University




Descriptor pre-processing

elevation
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Results (pre-processing)
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= Aggregation offers better trade-offs than sub-sampling
= GMP is preferable to MP when aggregating many dissimilar descriptors
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System design
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Indexing
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Indexing

= Hierarchical aggregation: best of both worlds
» Upper levels: coarse search = large complexity gains
> Lower levels: fine search = higher retrieval performance
= Node: set of database descriptors; leaf: single database descriptors
= Index search:
» Compute distance of a query with all children of the root
> Pick node with lowest distance; put other nodes in priority queue
» Continue until reaching leaf node
> Pull node with lowest distance in priority queue and recurse
= Early stopping: allows exploration of cost/accuracy trade-off
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Indexing

= Data-based hierarchy (DBH)
» Based on k-means tree algorithm in FLANN [Muja et al., *14]
» Choose branching factor B
» Recursive k-means until each cluster contains < B descriptors
> Internal node descriptors:
* Pooled with GMP
* Normalized

(1,1)
= Geometry-based hierarchy (GBH)
: : : (2,1)
» Based on view orientation
>+ room-level aggregation (4’1)4
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Results (DBH)

42 -
04— —
_38-
X
% 364 —e— Linear search
€ —o— DBH, B = 64
24 —o— DBH, B = 128
—— DBH, B = 256
—eo— DBH, B = 512
32 A —— DBH, B = 1024
FLANN, B = 32
30 T T T LA | T T T LA L L | T T T LA L L | !
102 103 104 105

#descriptor comparisons

= Modifications to FLANN are critical for an acceptable performance
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Results (GBH)
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= Importance of pre-processing (last stage of the hierarchy)
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Results (Summary)

374 descriptors/query ~50k descriptors/query
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Conclusions

Reducing database size through pre-processing by
aggregating neighboring views (3x speed increase)

GMP provides a better representation for a set of
descriptors

Faster search by nesting multiple aggregation
levels (44x speed increase)

Code available on GitHub:

https://github.com/jbboin/panorama-indexing-localization
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https://github.com/jbboin/panorama-indexing-localization

OO0
%@8<—Questlons?—->8®g
102 OEYE D O
OO0



