Recurrent Neural Networks for Person Re-identification Revisited

Jean-Baptiste Boin
Stanford University
jbboin@stanford.edu

André Araujo
Google AI
andrearaujo@gmail.com

Bernd Girod
Stanford University
bgirod@stanford.edu
Person video re-identification

- Goal: associate person video tracks from different cameras
- Applications:
 - Video surveillance
 - Home automation
 - Crowd dynamics understanding

Image credit: PRID2011 dataset [Hirzer et al., 2011]
Person video re-identification: challenges

- Lighting variations
- Viewpoint changes
- Clothing similarity
- Background clutter and occlusions

Credit: iLIDS-VID dataset [Wang et al., 2014]
Framework: re-identification by retrieval

Database (Camera A)

Query (Camera B)

Sequence feature extraction

Sequence matching by feature similarity
Related work

- Most common setup
 - Frame feature extraction: CNN
 - Sequence processing: RNN
 - Temporal pooling: mean pooling
 - [McLaughlin et al., 2016], [Yan et al., 2016], [Wu et al., 2016]
Related work

- Most common setup
 - Frame feature extraction: CNN
 - Sequence processing: RNN
 - Temporal pooling: mean pooling
 - [McLaughlin et al., 2016], [Yan et al., 2016], [Wu et al., 2016]

- Extensions
 - Bi-directional RNNs [Zhang et al., 2017]
 - Multi-scale + attention pooling [Xu et al., 2017]
 - Fusion of CNN+RNN features [Chen et al., 2017]

See review paper [Zheng et al., 2016]
Outline

- Feed-forward RNN approximation with similar representational power
- New training protocol to leverage multiple video tracks within a mini-batch
- Experimental evaluation
- Conclusions
RNN setup

- $f^{(t)}$: inputs of sequence processing stage (frame descriptors)
- $o^{(t)}$: outputs of sequence processing stage
 \[
 o^{(t)} = W_i f^{(t)} + W_s \tanh(o^{(t-1)})
 \]
- $v_s = \frac{1}{T} \sum_{t=1}^{T} o^{(t)}$: sequence feature (output of temporal pooling stage)
Proposed feed-forward approximation (1/2)

- “Short-term dependency” approximation

 Disregard terms from step $(t-2)$ in output from step (t)

\[
o^{(t)} = W_if^{(t)} + W_s \tanh(o^{(t-1)}) \\
\approx W_if^{(t)} + W_s \tanh(W_if^{(t-1)})
\]
Proposed feed-forward approximation (2/2)

- “Long sequence” approximation

\[v_s = \frac{1}{T} \sum_{t=1}^{T} \sigma^{(t)} \]

\[\approx \frac{1}{T} \sum_{t=1}^{T} \left(W_if^{(t)} + W_s \tanh(W_if^{(t-1)}) \right) \]

\[= \frac{1}{T} \sum_{t=1}^{T} W_if^{(t)} + \frac{1}{T} \sum_{t=0}^{T-1} W_s \tanh(W_if^{(t)}) \]

\[\approx \frac{1}{T} \sum_{t=1}^{T} \left. \left(W_if^{(t)} + W_s \tanh(W_if^{(t)}) \right) \right|_{\sigma^{(t)}} \]

Using approximation from previous slide

Disregard edge cases (first and last frame) since videos are long
Proposed feed-forward approximation: new block

- Same memory footprint
- Direct mapping between RNN and FNN parameters
Training pipeline

- Training data

- Video tracks (camera A)

- Video tracks (camera B)

Frames
Training pipeline: RNN baseline

- **SEQ**: load sequences of consecutive frames in mini-batch
Proposed FNN training pipeline

- **FRM**: load independent frames
- Load images from many more identities in a mini-batch (same memory/computational cost)
Data and experimental protocol

- Dataset 1: PRID2011 [Hirzer et al., 2011]
 - 200 identities, average length: 100 frames / track
- Dataset 2: iLIDS-VID [Wang et al., 2014]
 - 300 identities, average length: 71 frames / track
- Data splits
 - Train/test set with half of the identities each
 - Performance averaged over 20 splits
- Evaluation metric: CMC (equivalent to mean accuracy at rank k)
Experiment: Influence of the recurrent connection

- Train weights on RNN-SEQ (RNN architecture, SEQ training protocol)
- Evaluate on RNN and FNN using the weights directly (**no re-training**)
- Same performance obtained

PRID2011 dataset
Experiment: Comparison with baseline

- FNN-FRM (ours) outperforms RNN-SEQ
- More diversity in mini-batches allows for a much better training
Comparison with baseline (comprehensive)

- Our method outperforms the baseline for all ranks in both datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>PRID2011</th>
<th>iLIDS-VID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
<td>1 5 10 20</td>
<td>1 5 10 20</td>
</tr>
<tr>
<td>RNN [12]</td>
<td>70 90 95</td>
<td>97</td>
</tr>
<tr>
<td>– (reproduced)</td>
<td>71.6 92.8</td>
<td>96.6 98.5</td>
</tr>
<tr>
<td>FNN-SEQ (ours)</td>
<td>72.3 92.9</td>
<td>96.4 98.4</td>
</tr>
<tr>
<td>FNN-FRM (ours)</td>
<td>76.4</td>
<td>95.3</td>
</tr>
</tbody>
</table>

CMC values (in %)
Comparison with state-of-the-art RNN methods

- Our method is considerably simpler than the other state-of-the-art RNN methods compared but still achieves comparable performance results.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>PRID2011</th>
<th></th>
<th></th>
<th></th>
<th>iLIDS-VID</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rank</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>1</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>RNN [12]</td>
<td></td>
<td>70</td>
<td>90</td>
<td>95</td>
<td>97</td>
<td>58</td>
<td>84</td>
<td>91</td>
</tr>
<tr>
<td>– (reproduced)</td>
<td></td>
<td>71.6</td>
<td>92.8</td>
<td>96.6</td>
<td>98.5</td>
<td>57.1</td>
<td>83.4</td>
<td>91.8</td>
</tr>
<tr>
<td>RFA-Net [18]</td>
<td></td>
<td>58.2</td>
<td>85.8</td>
<td>93.4</td>
<td>97.9</td>
<td>49.3</td>
<td>76.8</td>
<td>85.3</td>
</tr>
<tr>
<td>Deep RCN [15]</td>
<td></td>
<td>69.0</td>
<td>88.4</td>
<td>93.2</td>
<td>96.4</td>
<td>46.1</td>
<td>76.8</td>
<td>89.7</td>
</tr>
<tr>
<td>Zhou et al. [25]</td>
<td></td>
<td>79.4</td>
<td>94.4</td>
<td>-</td>
<td>99.3</td>
<td>55.2</td>
<td>86.5</td>
<td>-</td>
</tr>
<tr>
<td>BRNN [20]</td>
<td></td>
<td>72.8</td>
<td>92.0</td>
<td>95.1</td>
<td>97.6</td>
<td>55.3</td>
<td>85.0</td>
<td>91.7</td>
</tr>
<tr>
<td>ASTPN [17]</td>
<td></td>
<td>77</td>
<td>95</td>
<td>99</td>
<td>99</td>
<td>62</td>
<td>86</td>
<td>94</td>
</tr>
<tr>
<td>Chen et al. [2]</td>
<td></td>
<td>77</td>
<td>93</td>
<td>95</td>
<td>98</td>
<td>61</td>
<td>85</td>
<td>94</td>
</tr>
<tr>
<td>FNN-FRM (ours)</td>
<td></td>
<td>76.4</td>
<td>95.3</td>
<td>98.0</td>
<td>99.1</td>
<td>58.0</td>
<td>87.5</td>
<td>93.7</td>
</tr>
</tbody>
</table>

CMC values (in %)
Conclusions

- Simple feed-forward RNN approximation with similar representational power
- New training protocol to leverage multiple video sequences within a mini-batch
- Results significantly and consistently improved compared to baseline
- Results on par or better than other published work based on RNNs, with a much simpler technique
- Faster model training compared to RNN baseline
Questions?