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Visual search (Content-based image retrieval)
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Image query Database of images



3D object recognition - Retrieval system architecture
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Retrieval results
More compression (= faster search)

Higher
accuracy
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Retrieval system architecture
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Retrieval results
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§ Random aggregation
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Retrieval results
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§ Pose-based aggregation

16x compression
(or speedup)



Retrieval with descriptor aggregation 

WHAT DESCRIPTORS to aggregate?

WHAT AGGREGATION METHOD to use?

HOW TO USE aggregated descriptors?
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Background – Image representation
§ Traditional pipeline: hand-crafted features

› Local patch representation: SIFT [Lowe, ’04]

› Global descriptor: 

• Bag of Words (BoW) [Sivic et al., ’03]

• Fisher Vectors [Perronnin et al., ’07]

§ CNN-based features

› Representations extracted from networks trained on other tasks

› Can be fine-tuned for improved results
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Background – Descriptor aggregation
§ Mean/sum pooling (used in Fisher Vectors)

› “Burstiness” problem [Jégou et al., ’09]

§ Max pooling: preferred for BoW [Boureau et al., ’10]

11 Sum pooling Max pooling



Background – Descriptor aggregation
§ Generalized max-pooling (GMP) [Murray et al., ’14]

› Increased similarity to ALL descriptors
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mean
GMP



Background – Indexing and search
§ Task: Nearest Neighbor (NN) search

› Database: 𝑋 = 𝒙$, … , 𝒙' , with 𝒙( ∈ ℝ+, 
𝒙( , = 1

› Query: 𝒒 ∈ ℝ+, 𝒒 , = 1

› Find 𝑖 that maximizes 𝒒0𝒙(
› Exhaustive search: O(Nd)

§ High dimensional exact NN search is hard

› Space-partitioning indexing: e.g., k-d tree 
[Friedman et al., ’77]

› When 𝑑 ≥ 10, no gains compared to 
exhaustive search [Weber et al., ’98]
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Background – Indexing and search
§ Approximate Nearest Neighbor (ANN) techniques:

› Space-partitioning techniques

• FLANN [Muja et al., ’14]

› Distance approximation: search in a lower-dimensional space

• O(Nd) → O(Nd’), d’ ≪ d

• Locality-Sensitive Hashing (LSH) [Charikar, ’02]
Product Quantization (PQ) [Jégou et al., ’11]

› Aggregate descriptors into groups represented by a single vector

• O(Nd) → O(N’d), N’ ≪ N

• Group testing [Shi et al., ’14]
14
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Contribution 1



Memory vectors
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Image descriptor 𝑥$ 𝑥, 𝑥7 𝑥8 𝑥9 𝑥: 𝑥; 𝑥< 𝑥= 𝑥$> 𝑥$$ 𝑥$,

§ Complexity (number of similarity computations): 𝐶 = 𝑁

Query 𝑞

§ “Memory vectors for similarity search in high-dimensional spaces”
[Iscen et al., ’17]

§ Exhaustive search



𝑥= ⊕ 𝑥$>

𝑥= 𝑥$>

𝑥7 ⊕ 𝑥8

𝑥7 𝑥8

𝑞

Memory vectors
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§ Dataset partitioned into units of size 𝑛, represented by a “memory  
vector” 𝒎

§ Memory vector discarded if similarity is: 𝒒0𝒎 < 𝜏

Memory vector

Image descriptor

𝑥$ ⊕ 𝑥, 𝑥9 ⊕ 𝑥: 𝑥$$ ⊕ 𝑥$,

𝑥$ 𝑥, 𝑥9 𝑥:

𝑥; ⊕ 𝑥<

𝑥$$ 𝑥$,

Query

§ Complexity: 𝐶 ~
'→HI

J
K
+ N N 𝑃PQ

𝑞

𝑛 = 2

𝑥; 𝑥<



Memory vector

§ Add another stage by aggregating memory vectors themselves

Two-stage retrieval

Stage 1

Stage 2

Image descriptor 𝑥$ 𝑥, 𝑥9 𝑥:

𝑥$ ⊕⋯⊕ 𝑥:
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Query 𝑞

𝑥$ ⊕ 𝑥, 𝑥9 ⊕ 𝑥:

𝑥; 𝑥< 𝑥= 𝑥$> 𝑥$$ 𝑥$,

𝑥; ⊕⋯⊕ 𝑥$,

𝑥; ⊕ 𝑥< 𝑥= ⊕ 𝑥$> 𝑥$$ ⊕ 𝑥$,

𝑞

𝑥7 𝑥8

𝑥7 ⊕ 𝑥8

𝑞

§ Complexity: 𝐶 ≤
'→HI

J
KU
+

JNVWX U

KY
+ N N 𝑃PQ(Y) 𝑛$ = 6

𝑛, = 2



Database / query model
§ Database: 𝒙$, … , 𝒙' , i.i.d., drawn uniformly over the unit sphere
§ Query: random variable 𝑸 related to one vector, w.l.o.g. 𝒙$

› 𝑸 = 𝛼𝒙$ + 𝛽𝒁 (such that 𝑸 , = 1)
§ We derive the distributions of scores of positive and negative memory 

vectors using SUM or GMP aggregation
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Parameters:
d = 1000
𝛼 = 0.7
n = 50

SUM GMP



Two-stage retrieval – Results
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Parameters:
d = 1000
𝛼 = 0.7



Class-aware retrieval
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Query

§ Class labels: 𝑛a vectors per class
§ Task: class retrieval

§ Proposed adaptations:
› Stage 2 only aggregates 

within class
› Stop search at stage 2

Image descriptor 𝑥$ 𝑥, 𝑥7 𝑥8 𝑥9 𝑥: 𝑥; 𝑥< 𝑥= 𝑥$> 𝑥$$ 𝑥$,𝑥$ 𝑥, 𝑥7 𝑥8 𝑥9 𝑥: 𝑥; 𝑥< 𝑥= 𝑥$> 𝑥$$ 𝑥$,

Stage 2 𝑥$ ⊕ 𝑥, 𝑥7 ⊕ 𝑥8 𝑥9 ⊕ 𝑥: 𝑥; ⊕ 𝑥< 𝑥= ⊕ 𝑥$> 𝑥$$ ⊕ 𝑥$,

Stage 1 𝑥$ ⊕⋯⊕ 𝑥: 𝑥; ⊕⋯⊕ 𝑥$,

𝑥$ ⊕ 𝑥, 𝑥7 ⊕ 𝑥8 𝑥9 ⊕ 𝑥: 𝑥; ⊕ 𝑥< 𝑥= ⊕ 𝑥$> 𝑥$$ ⊕ 𝑥$,

𝑞𝑞



Class-aware retrieval – Results
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Parameters:
d = 1000
𝛼 = 0.7



Theoretical framework – Take-away
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Within-class aggregation offers speed gains 
by removing the need for image-level search

GMP provides a better representation for a 
set of descriptors

Nested aggregation levels yield a better 
cost/performance trade-off
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Contribution 2



3D object retrieval – Take-away
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Descriptors sharing similar characteristics 
(e.g. camera pose) should be aggregated

Code available on GitHub: 
https://github.com/jbboin/fisher_vector_aggregation_3d

https://github.com/jbboin/fisher_vector_aggregation_3d
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Contribution 3



Indoor Localization
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§ Task: panorama retrieval using a 
single query image

§ Need to choose how to represent a 
panorama as a set of views

View
sampling

Descriptor
pre-processing

Descriptor
extraction

Indexing
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Descriptor pre-processing

Sub-sampling Aggregation

(2)(2) (4)(4)
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Results (exhaustive search)



Indexing – Hierarchical aggregation
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§ Best of both worlds
› Upper levels: coarse search = large complexity gains
› Lower levels: fine search = higher retrieval performance

(1,1)

(2,1)

(4,1)

§ Data-based hierarchy
› Based on FLANN            

(k-means tree)
› Internal node descriptors:

• Pooled with GMP
• Normalized

§ Class-based hierarchy
› Based on view orientation
› + room-level aggregation



Results
374 descriptors/query

133x complexity reduction
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~50k descriptors/query

3x44x



Localization – Take-away
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Within-class aggregation offers speed gains 
by removing the need for image-level search

GMP provides a better representation for a 
set of descriptors

Nested aggregation levels yield a better 
cost/performance trade-off

Code available on GitHub: 
https://github.com/jbboin/panorama-indexing-localization

https://github.com/jbboin/panorama-indexing-localization
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iLIDS-VID dataset [Wang et al., ’14]

Person video re-identification

34

Credit: PRID2011 dataset [Hirzer et al., ’11]

§ Task: associate person video 
tracks from different cameras Lighting variations

Clothing similarity

Viewpoint changes

Background clutter and occlusions



Sequence descriptor 
extraction

Sequence descriptor 
extraction

Sequence descriptor 
extraction

Sequence descriptor 
extraction

Database (cam. A)

Query (cam. B)
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Framework: re-identification by retrieval

CNN CNN CNN

RNN

Mean pooling

Sequence descriptor

RNN RNN

[McLaughlin et al., ’16]

Sequence descriptor 
extraction

Descr. 
extraction

Descr. 
extraction

Descr. 
extraction



Proposed feed-forward approximation
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W1

tanh W2

õ(t)i(t)

FNN
(feed-forward 

neural network):

§ Same memory footprint

§ Direct mapping between RNN and FNN parameters

RNN:

W1

tanh W2

o(t-1)

o(t)

o(t)i(t)



Validation of our approximation
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§ Train weights on RNN

§ Evaluate on RNN and FNN using the weights directly (no re-training)

§ Same performance is observed

PRID2011 dataset



Improved training process
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§ More flexibility in training

› SEQ: sequences of consecutive frames

› FRM: independent frames



Person re-identification – Take-away
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Complex techniques outperformed by simpler 
and more flexible temporal pooling methods

Code (partially) available on GitHub: 
https://github.com/jbboin/action-recognition-revisited

https://github.com/jbboin/action-recognition-revisited


Conclusions
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§ Within-class aggregation keeps search to higher levels of abstraction  

§ In a class, aggregating based on similar characteristics is beneficial

§ 16x speed increase for 3D object retrieval; 3x for localization

§ GMP provides a better representation for a set of descriptors

§ Higher performance when aggregating many dissimilar descriptors

§ Simple pooling techniques outperform more complex ones

§ Theoretical cumulative gains when nesting aggregation levels

§ Hierarchical indexing makes coarse-to-fine search possible

§ 44x speed increase for localization compared to exhaustive search
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