
Tiny ImageNet Challenge - Dissection of a convolutional neural network

Jean-Baptiste Boin
Stanford University
jbboin@stanford.edu

Abstract

In this project, we tried to achieve the best classification
performance in the Tiny ImageNet Challenge using con-
volutional neural networks. Our constraint was a modest
training infrastructure, as well as a limited time for train-
ing, which prompted us to try to get the most out of relatively
shallow network architectures (compared to typical state-
of-the-art networks). At the time of writing this report, our
model achieved the fifth place in the class leaderboard, with
a test accuracy of 44.0%. Another goal of this project was
to see how different components of a network contributed
to its performance. In order to achieve that, we evaluated
different iterative versions of the same architecture, with in-
creasing complexity. We then evaluated the validation accu-
racy of these different models so as to see how each added
feature increased the accuracy. In particular, this analysis
showed the importance of dropout units, especially in limit-
ing overfitting.

1. Introduction

The Tiny ImageNet challenge is a smaller scope version
of the ImageNet challenge (ILSVRC) [1] which was intro-
duced for this class. We werre given 100,000 training im-
ages, with 500 images from 200 different classes, 10,000
validation images and the same number of test images. The
images were color images of size 64 ⇥ 64. We were also
given a bounding box around the object on the training im-
ages. Our goal was to guess the class that each test image
belongs to.

In this report, we are presenting our results and justifying
our approach. In part 2, we will review some useful mate-
rial that shaped this project. Part 3 will present in detail the
best performing architecture that we trained and how we
trained it. Finally, part 4 will focus on our achieved results.
In that part, we will also discuss our “convnet dissection”
experiment, where we evaluated the accuracy of an iterative
architecture in order to see what components were respon-
sible for the largest gains in the accuracy.

2. Background

Our main goals in this project were to experiment on dif-
ferent techniques that are used for training a convnet (from
scratch, since transfer learning was not allowed for this
challenge). Starting from a relatively classic architecture,
we added/removed different components and studied how
they affected the performance of the network, by keeping
track of the changes in validation accuracy. This iterative
approach provided us with more insight on how to improve
the accuracy for this dataset, and thus get a more discrimi-
native network, without being crippled by overfitting.

In our limited time working on this project, we consid-
ered different techniques that could improve our network.
Here, we will first give a some background of the techniques
that we experimented on as well as the theoretical justifica-
tion behind them.

• Leaky ReLU nonlinearities. The leaky ReLU nonlin-
earity was introduced by Maas et al. [6] Even though
it is slightly more computationally demanding than
the very straightforward ReLU nonlinearity, the fact
that its gradient is nonzero on its own domain usually
makes it more successful for training a network.

• Tradeoff size of filter/depth. Some models like
Krizhevky’s model [5] introduce a first layer with large
filters. On the other hand, other successful architec-
tures such as [7] proved that sticking with smaller fil-
ters while duplicating the layers could lead to an in-
crease in performance. The reason behind this im-
provement is that successive small filters can describe
more complex relations than a single large filter.

• Data augmentation. This is one of the most popular
methods for dealing with overfitting, which was rela-
tively useful here.

• Dropout. This regularization method was introduced
by et al. [3] and was shown to give substantial gains
as illustrated by this model by Krizhevsky et al. [5],
which was the best classification algorithm in the 2012
ImageNet Challenge. As the previous method, it is ex-
pected to help mitigating overfitting.

1



Figure 1. Architecture of our basic network on which we built the successive iterative architectures until our final model. The ReLU and
pooling layers are not explicitly drawn.

• Model ensembles. This technique is relatively
straightforward, but can still provide some improve-
ments in our accuracy if implemented. Given the
results of the 2014 ImageNet challenge, such as
Google’s successful submission GoogLeNet [9], it
seems that this technique became very popular and
consistently gives an additional boost of accuracy.

3. Approach

In order to spend more time on the higher level questions
related to this project, we decided to work with the CAFFE

framework [4].
For this project, we wanted to be able to train a network

with our available infrastructure, without paying for addi-
tional resources such as Terminal or Amazon EC2 servers.
We only relied at 100 % on the Stanford FarmShare rye
servers, which provide us with a low number of GPUs that
had to be shared with other students, mostly from this class.
For that reason, we could not implement and train some of
the most complex state-of-the-art architectures that would
outperform our current results, but instead we strived at get-
ting the highest accuracy from a model with a limited num-
ber of parameters and layers. This constraint was an inter-
esting twist that forced us to focus on more refined tech-
niques rather than a brute-force deep network.

Our first baseline network is described layer by layer as
follows. An illustration is given in figure 1.

1. Data layer

2. Convolutional layer - filter size: 5, stride: 1, number
of filters: 50

3. ReLU

4. Pooling layer - max pooling, stride: 2

5. Convolutional layer - filter size: 5, stride: 1, number
of filters: 100

6. ReLU

7. Pooling layer - max pooling, stride: 2

8. Convolutional layer - filter size: 3, stride: 1, number
of filters: 200

9. ReLU

10. Pooling layer - max pooling, stride: 2

11. Fully connected - 400 units

12. ReLU

13. Fully connected - 200 units

14. Softmax classifier

This is a relatively classic architecture, motivated by our
infrastructure constraints. We introduced a pooling layer
after each conv-ReLU block so that we would quickly de-
crease the size of the feature maps, and thus decrease the
memory/processing time necessary for each image. The fil-
ters in the first two convolutional layers have a size of 5⇥5,
which is motivated by the fact that we wanted to learn suffi-
ciently discriminative models using our three convolutional
layers only.

After training this model, we then implemented different
additional in an iterative way, adding them one after each
other until we reached our most complex, and also best per-
forming, model. The way we present our roadmap is very

2



Figure 2. Architecture of an instance of our final network. Results from 11 similarly trained models with this architecture was used for our
final predictions.

linear. However, in practice, we tried other different archi-
tectures that we did not list here, either because they were.
More discussion about this will be included in the next sec-
tion. Each model of the following list includes all compo-
nents of the previous one, and implements an additional one
that is given in the description.

1. Simple model: Architecture presented above

2. + dropout 1: We added a dropout unit (probability:
0.5) between the two fully connected layers.

3. + data augmentation: We generate random aug-
mented data on the fly by applying random horizontal
mirroring and cropping a 60 ⇥ 60 window out of the
64⇥ 64 images.

4. + leaky ReLU: We replaced all the ReLU nonlineari-
ties by leaky ReLU that have a fixed negative slope of
0.01.

5. + more parameters: We increased the number of fil-
ters in the three convolutional layers, from 50, 100 and
200 respectively to 64, 128 and 256. We also consid-
erably increased the size of the first fully connected
layer, from 200 units to 2048 units.

6. + split second conv layer: We replaced the sec-
ond convolutional layer with three convolutional lay-
ers with filters of size 3⇥3, each separated by a ReLU
(but no pooling layer in between them).

7. + dropout 2: We added another dropout unit (prob-
ability: 0.5) between the last convolutional layer and
the first fully connected layer.

8. + ensemble model: We trained 11 models of the pre-
vious architecture with slightly different hyperparam-

eters as well as a different initialization, and averaged
the prediction probabilities within the models.

These models were fine-tuned by varying the learning
rate and weight regularization parameters in a coarse to fine
manner, using the validation data. As we go down the differ-
ent models, a larger training time was usually needed, espe-
cially when there was augmented data or more parameters
to train. The parameters given above, such as the dropout
probabilities, were also chosen because they gave good re-
sults compared to other coarsely sampled values. It is to be
noted however that we did not fine-tune these parameters.
For all the models, we used a similar gaussian initialization
for the weights, independently of the layer they were in. For
practical reasons, we did not vary the standard deviation of
the gaussian and assumed that our choice of parameter was
good enough. Some papers, like [2], introduce a careful
initialization method that seems to outperform a standard
gaussian initialization. We did not follow their procedure
so that we would have more time looking at the influence of
other parameters. Finally, we used a momentum stochastic
gradient descent with a momentum parameter of 0.9.

The final ensemble model was the one that we used for
our submission. A simplified diagram of the architecture of
a single model is given in figure 2.

4. Experiments and Analysis

4.1. Tiny ImageNet submission

We presented above the architecture of our submission.
In this subsection, we give more information on our sub-
mitted predictions and analyze some data related to this net-
work.

Among the models that we trained for the ensemble, the
single model with the highest validation accuracy achieved

3



a validation accuracy of 44.90 %, while having a training
accuracy of around 66.3 % and a validation loss of 2.368.

The weights from the first layer of this model are shown
in figure 3. The reason why this figure has a low contrast
is because the filter values are normalized so that the range
of the values would fit in the [0, 255] range, and despite our
regularization, some of our filters had very peaked values.
We can remark from this figure that this set of weights is
qualitatively satisfying. Indeed, most of the filters are very
different from one another, and they seem to capture var-
ied information: edges of different orientation, color blobs,
lines, high frequency texture, etc. Most filters look smooth,
which proves that our regularization parameter was not too
low, but some of them are also very peaked, which means
that our regularization parameter was not too high either and
our filters could capture noisy texture information.

Figure 3. Filters of the first convolutional layer from our best single
convnet (with respect to the validation accuracy).

We can verify this by looking at typical feature maps
from this first layer applied to an example image, in figure
4. The responses are varied and capture information from
varied parts of the image.

The validation accuracies given above correspond to the
values we got from the predicted probabilities by feeding
each image to the network. In order to improve the result
of the prediction of one image, one way to go is to pre-
dict values for different oversampled versions of that same
image, and then to average the probabilities. We used the
default Caffe option for oversampling, which correspond to
predicting 10 images: the cropped center as well as corners,
and their mirrored versions. This typically improved our
validation accuracy by around 1.5%. Indeed, for the best
network described above, this additional step boosted our
validation accuracy from 44.90 % to 46.4%.

Figure 4. Feature maps from the first layer.

When preparing our ensemble model, we trained 11 sim-
ilar networks with this architecture, and evaluated their val-
idation accuracy using the oversampling above. We reused
some of the code from assignment 3 to test all the 211�1 =
2047 possible combinations of models, and evaluated the
validation accuracy of each of them. The plot of the per-
formance of these models with respect to the number of
models used is given in figure 5 (code from assignment 3
was reused here). As expected, we can boost our accuracy
by a few more percents by averaging the values from sev-
eral models. The best combination used 8 models out of
11 and achieved a validation accuracy of 49.06 %, which
could imply that 3 of the models should be excluded from
our ensemble. But the model ensemble made up of all 11
models achieved a validation accuracy of 49.02 %, which is
almost equal, so we considered that it did not make sense to
exclude the 3 aforementioned models. Thus, we used these
11 models for our final predictions.

In figure 6 we showed the test and validation accuracy
achieved by our ensemble model, as well as a typical train-
ing accuracy of one single model (cf. caption for more in-
formation). We can see an interesting phenomenon: de-
spite having a validation accuracy of 49.02 %, our ensem-
ble model could only achieve an accuracy of 44.0 % on
our testing images. The gap is considerable and cannot be
just explained by statistical fluctuations. The usual expla-
nations given for such a behavior are usually that we over-
fitted our hyperparameters when using the information from
the validation accuracies, in this case these hyperparameters
would be the ones that we fine-tuned: the learning rate and
weight regularization. However, when training the 11 mod-
els that made up our ensemble (using different initialization
and slightly different hyperparameters), all the validation

4



Figure 5. Validation accuracy for each possible combination of our
models.

accuracies with oversampling had a low standard deviation,
going from 45.21% to 46.44%, so we would expect these
accuracies to be the same on the validation data, if the val-
idation and test images have the same statistics. This was
apparently not the case since the test accuracy of the ensem-
ble model was of even lower than the validation accuracy of
all the single models. To this time, we still do not have a
convincing explanation for that, so we will have to accept
the unconvincing explanation that we did overfit our hyper-
parameters.

One way to mitigate this problem would have been to use
k-fold cross-validation, which would have confirmed if we
really overfitted our data or if the test images have different
statistics to the validation images. We unfortunately did not
have time to implement that, so we had to stick with a final
test accuracy of 44 %.

Figure 6. Accuracies obtained for our ensemble model. To be
noted: the training accuracy does not correspond to the training
accuracy of this model, but to the training accuracy of the best sin-
gle model. It is just given as an order of magnitude of the typical
training accuracy achieved by this architecture.

4.2. Dissection of our network

This subsection describes the result of our “convnet dis-
section” experiment. As described in section 3, we trained
and fine-tuned many different architectures, going from a
simple model to a higher and higher complexity.

Using the notations previously introduced, we show in
figure 7 the different gains in validation accuracy. The
“oversampling” step does not correspond to a different
model to the previous one, which is why it was not listed
previously, but it corresponds to a different way of evaluat-
ing the validation accuracy. Up to that point, all validation
accuracies are evaluating using only one prediction per im-
age, while the oversampling mode uses ten predictions per
image, as explained in the previous subsection.

Figure 7. Validation accuracies obtained for each model as com-
plexity is added (from top to bottom).

One caveat of our approach is that our results are noisy.
Indeed, each of these bars correspond to the value that we
get from fully training one model with a given set of hyper-
parameters. It is unknown if we would get similar values
when training the same model with a different random ini-
tialization, andn if we had more time, a better experiment
would have been to train a dozen instances of each type
and to average the validation accuracies. Still, we can get
an idea of the typical standard deviation by looking at all
the models from our ensemble model. Indeed, for the en-
semble model, we had to train 11 models with almost equal
hyperparameters. These models had a standard deviation
in the validation accuracy of 0.37%. This shows that even
the values from one trained model still provide enough in-
formation to get some interesting insight for this specific
architecture.

Another flaw in this approach is that we used the same
validation set to tune our hyperparameters and evaluate the
architecture, which means that we may have a bias that
tends to overestimate these values. On the other hand, all
the values are biased in a similar way, so the real gains we
get from adding a component may not be that different from
what we got here.

Because of these approximations, this experiment can-
not be considered as completely accurate, but we can still

5



get very interesting insights by looking at the validation ac-
curacy values.

As we can see from the plot, the two main gains occurred
when we added the dropout units (4.88% and 4.52% respec-
tively for the first and second dropout units). A hasty con-
clusion would be that these units by themselves contribute
to some considerable gains. However, we can nuance it by
looking at the theoretical effect of dropout on a network.
As we saw, the main effect of dropout is that it prevents
co-adaptation of features [3], and thus decreases overfit-
ting. Knowing this, we can put the dropout units in context.
We can see that in the case of the second dropout unit, we
added it after splitting the second convolutional layer into
three convolutional layers with smaller filters. That previ-
ous step increased the number of parameters (each 5 ⇥ 5
filter being replaced by three 3 ⇥ 3 filters) but only had
a moderate effect on the validation accuracy. In fact, it
turns out that the training accuracy went from 67.76% to
88.60% when we splitted this layer. That step considerably
increased the capacity of the model, but also the overfitting.
Thus, it made sense to add another dropout unit after that,
so that we could decrease again the overfitting and collect
the gains from our added capacity. This is exactly what hap-
pened. After adding this second dropout unit, the training
accuracy went back down to a lower value: 66.28%, and
meanwhile the validation accuracy went up. In the case of
the first dropout, a similar phenomenon occured: the base
model had enough parameters to have a relatively high ca-
pacity, but it was crippled by a large overfitting. Adding the
first dropout unit helped to mitigate the problem.

Looking at the other large gains, we see that augmenting
the data and averaging multiple models accounted for good
improvements (resp. 3.09% and 2.58% increase in the val-
idation accuracy). This is consistent with what we learned
about how convnets work as well as what is actually done
in practice in state-of-the-art papers. Going from a ReLU to
a leaky ReLU gave an interesting 1.2% increase in our ac-
curacy without much additional effort. Adjusting the slope
could maybe even lead to more substantial gains.

Some other network architectures that we tried without
much success include the following. We tried a version of
the architecture where the second convolutional layer was
split in two layers instead of three, but it seemed to be per-
forming worse than the previous version. Looking back at
it, it may be due to the fact that the overfitting increased,
as it was the case for the 3-layer split (explained above).
Another architecture tried to make use of multiple dropout
units, as was done by Srivastava et al. [8]. This papers gives
interesting guidelines when using many dropout units. In
this case, it is indeed necessary to increase the learning rate,
but care needs to be taken since a learning rate too large
will lead to instabilities. It is thus important to normalize
the weights in order to overcome this problem. Because of

this complexity, we could not successfully train a network
with many more dropout units.

5. Conclusion

It was interesting to learn how to train a large convolu-
tional neural network from scratch and to get more insight
on how its different components interact. By trying to get
the best accuracy from a relatively simple architecture, we
were forced to only consider the techniques that would not
considerably increase our number of parameters. On the
other hand, this was probably also one of the main reasons
why we did not achieve higher accuracies in our final model,
since our model capacity was limited.

The “dissection experiment” gave interesting results de-
spite its known flaws, but studying its results also showed
us something interesting about convnets: it is often impossi-
ble to evaluate the effect of a given technique by comparing
the validation accuracy with or without it, because it may
only work with other specific components. One example
was shown for the dropout units: they gave good improve-
ments because they were applied when we had an architec-
ture with a large capacity, but also a large overfitting. The
gains would have probably be smaller if we had not been in
such a situation. Still, our belief in the usefulness of these
units has been confirmed by our experiments, but it is im-
portant to know when their efficiency can be maximized.

References

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database. In
Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 248–255. IEEE, 2009.

[2] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into recti-
fiers: Surpassing human-level performance on imagenet clas-
sification. arXiv preprint arXiv:1502.01852, 2015.

[3] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Improving neural networks by prevent-
ing co-adaptation of feature detectors. CoRR, abs/1207.0580,
2012.

[4] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors,
Advances in Neural Information Processing Systems 25, pages
1097–1105. Curran Associates, Inc., 2012.

[6] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlineari-
ties improve neural network acoustic models. In Proc. ICML,
volume 30, 2013.

[7] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

6



[8] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper
with convolutions. CoRR, abs/1409.4842, 2014.

7


