
Improving feature tracking using motion sensors

Jean-Baptiste Boin
Stanford University
jbboin@stanford.edu

Abstract

A reliable and fast tracking algorithm is the core of a
mobile augmented reality application. However, being on
a computing power limited platform adds constraints that
can lead to reduced performance (e.g. frame rate). In this
paper, we present a new method of fast tracking by using the
motion sensors that are available in most mobile platforms
sold nowadays. They allow us to estimate the position of
features in consecutive frames, so that we get an increase of
around 45% of frame rate in the tracking of a textured 2D
target. Our method is also a proof of concept that shows
that estimating feature descriptors at each frame is not a
necessary step in feature tracking, and staying at an ab-
stract level by using geometric relations can yield enough
information to get accurate results.

1. Introduction

Porting state-of-the-art computer vision algorithms to
mobile devices is a difficult, but desirable task. Indeed,
some applications require mobility, like augmented reality.
However, running an application in real time may be tricky
given the limited resources available on a mobile device.
This is why the algorithms may need to be downscaled or
simplified.

A typical augmented reality pipeline is composed of ob-
ject recognition, object localization and object tracking. In
this project, we will be focusing on the third part, the track-
ing of a target in real-time. We will be focusing on feature-
based tracking, and our goal will be to make it more efficient
by using the motion sensors in the mobile device (gyro-
scopes, accelerometers, magnetometer). Our approach will
be compared to a pure vision-based feature matching sce-
nario, which will be our baseline. Since we want to be able
to track our target in real-time, we need to run the tracking
algorithm for each frame and it should complete before the
next frame is acquired. This shows how achieving an effi-
cient tracking is critical to the performance of an augmented
reality application. If the baseline can be efficient enough
for simple situations, it is possible that some optimizations

are needed if we need to deal with more complex objects
(e.g. several 2D targets or one 3D target). In that case, an
increase in the performance would allow for more advanced
applications. For this project, we will try to develop and
evaluate such an improvement in simple situations.

2. Context of our work

2.1. Review of previous work

While we did a bibliographic search on the subject, we
realized that using motion sensors to aid tracking is not
something that has been extensively researched on. There
could be mostly two explanations for that. Either the use
of motion sensors does not improve considerably the per-
formance of tracking a target, which would jeopardize our
whole project, or there has not been sufficient time yet to
have real improvements using this additional measurement.
Indeed, if accelerometers and gyroscope have been around
for some time, they were not as tightly integrated as they are
now, and using them required to use external devices that
needed to be calibrated with the camera. It is also possi-
ble that the increase of computing power in recent handheld
devices could only recently allow us to run the algorithms
that we used in this project fast enough, or that the motion
sensors were still not reliable for such applications until re-
cently. Whatever the reason is, most papers do not give a
central role to these motion sensors in the tracking of an
object.

For example, in [1], the authors used mostly a visual
based tracker, with two different modes, direct or incremen-
tal, depending on whether they would compare the current
frame to a reference image or to the previous frame, and
the only use of the sensor tracker is to validate the values
given by the visual tracking. In an older paper [2], high
frequency data from the sensors is fused with the low fre-
quency data given by a visual system using an extended
Kalman filter, showing that the fusion improves the accu-
racy given by each sensor alone.

Wagner et al. [3] could get some interesting results for
tracking natural images using a simplified version of SIFT
(called PhonySIFT) or Ferns. Using a motion model that

1



predicts the motion of the next from the motion of the pre-
vious frames, they also develop a patch based method that
uses normalized cross correlation to get the position of the
new patch in the vicinity of where the model predicted it
to be. Our contribution bears some similarities to this ap-
proach, except that we tried to run our algorithm at the ab-
stract level of the keypoints and not going down to the pixel
level after the keypoints are detected for a given frame.

SURFTrac developed by Ta et al. [4] tracks features by
detecting higher-level keypoints (based on SURF), but with-
out extracting descriptors. We will develop a similar ap-
proach here, but with lower-level keypoints based on ORB.

2.2. Main contributions

Unlike most projects presented for this class, this one is
not an implementation of a computer vision algorithm writ-
ten by other authors. Instead, we are trying to answer a more
open-ended research question: can we efficiently track a tar-
get using a feature-based method and information given by
the motion sensors of the device? Because of the limited
time we had, we could not aim at implementing a perfect
algorithm, and we preferred to give a proof of concept of
what we could achieve. In this report, we will justify the
different choices we made for the project and in the end an-
alyze them in the light of the results obtained. We will also
hint at the different improvements that could be brought to
our current method to improve the results.

Our main contribution in this project is to make use of
the motion sensors of the device to get a fast tracking al-
gorithm. We also develop a way of tracking features with-
out having to extract computationally expensive descriptors,
making use of a priori estimates of how features will move
between frames.

3. Technical solution

3.1. Summary

The main architecture of the system that we built is given
in figure 1. It is made of two states. The first state, which
also corresponds to our baseline, is used as a bootstrapping
step to precisely identify the position of our target. It com-
pares each processed frame to the reference image of the
target, contained in the database, and is relatively slow. This
step is developped in the next sub-section.

As an output of this first step we get a good guess of the
homography that maps the reference image to our camera
frame, which means that we know precisely where the out-
line of the target is in our image. The second step is the
actual tracking. Our current model is iterative and in this
step we find the best affine transformation that maps the tar-
get between two consecutive frames. If this transformation
search fails, then we go back in the bootstrapping step. This
second step is made of three distinct parts:

Figure 1. Architecture of the system.

• Estimation of the transformation of the keypoints from
the previous frame, using the new rotation matrix given
by the motion sensors

• ORB keypoint detection on the current frame

• RANSAC loop to find the best match between our es-
timates and the actual keypoints

We will elaborate on these parts in the following sub-
sections.

At the end of this step, we can estimate the transforma-
tion (homography) between the previous frame and the cur-
rent frame. This allows us to update the positions of the
corners of the target.

If the previous step fails, which happens when we cannot
properly map the keypoints between consecutive frames or
if motion blur in one frame prevents the detection of enough
keypoints, then we go back to the bootstrapping step to get
a new clean estimate of the frame position.

3.2. Bootstrapping step (baseline)

This step is based on a typical image matching algo-
rithm. At initialization of our application, we first extract
2000 ORB keypoints on our reference image as well as the
corresponding descriptors. Then, at runtime, we extract 500
ORB keypoints and descriptors on the current frame. We
then match each of the descriptors extracted to the reference
descriptors, using the BFMatcher (brute-force) in OpenCV.
After removing the matches with a high distance, we run a
geometric verification with RANSAC. If this step still re-
turns more than 20 geometrically consistent inliers, then we
consider the bootstrapping successful and we can move to
the tracking step.

The number of keypoints extracted was chosen empiri-
cally. We extracted more keypoints/descriptors in our ref-
erence image because this step is only done once, while we
extracted fewer of them in each frame at runtime.

Figure 2 shows the output of this step. More explanation
for the implementation is given in the code as well as in
section 4.2.

A time analysis of an average cycle gave us more insight
on the time-consuming steps in this baseline, and allowed

2



us to come to the conclusion that the descriptor extraction is
one of the most consuming steps, which is why we removed
it in our main tracking step. We will elaborate more on that
in part 4.1.2.

Figure 2. Example of the output of the bootstrapping step. The
green circles are the features we extracted that match with the ref-
erence image of the target and that are geometrically consistent

We also call that step baseline because it is the basic al-
gorithm that we are trying to improve through our tracking.
This algorithm by itself could already give a very reliable
tracking for a 2D target, but it would not be very fast, which
is something we want to focus on for this project.

3.3. Tracking step

The main time gain in that step compared to the baseline
comes from the fact that we do want to restrict the pixel
operations as much as possible, and to stay at a higher level
of abstraction, by dealing only with keypoints. This is why
the ORB keypoint detector is the only pixel operation that
will be done in that step.

3.3.1 Prior estimates of the previous keypoints using

motion sensors

As presented in the Google Tech Talk “Sensor Fusion on
Android Devices: A Revolution in Motion Processing”[5],
the noise in the orientation angles and in the linear acceler-
ation account for a very large drift once these accelerations
are double-integrated, and so it makes it completely impos-
sible to measure translation between two camera poses by
using just the sensors of the device. However, it is possible
to measure rotations with reasonable accuracy, and we have
several tools available for this purpose.

The Android SDK allows us to access values from dif-
ferent sensors in the device, but it also offers interesting
“composite” sensors that are based on values from these
sensors.[6] These composite sensors are obtained from the
values given by the raw sensors and processing them using
Kalmann filters, commonly used in sensor fusion.

Among them is the “Rotation vector” sensor that uses
accelerometer, gyroscope and magnetometer. It gives the
rotation of the device with respect to a fixed coordinate sys-
tem, East-North-Up. Our experiments showed us that the
rotation values given by this sensor were already pretty ac-
curate, and their real-time update reflected the motion of the
device.

If the motion between two consecutive frames was a pure
rotation and that the motion sensors gave us perfect mea-
surements on the rotation matrix of our device, then we
would be able to know exactly the position of each point
of the first frame in the second frame. These points would
be related by a homography, its matrix being given by:

H
sens

= KR
sens

K�1

where R
sens

is the relative rotation between the frames
and K is the camera matrix. We found the values of K
by calibrating the camera. Obviously, we had to remap the
axes properly so that the axes of rotation matrix given by the
motion sensors correspond to the actual coordinate system
used in computer vision.

In practice, the relative rotation matrix will be slightly
off, and the translation component of the motion will in-
troduce an additional discrepancy with the previous model.
But since we know that the target is planar, we are sure
that the transformation of the target between the two frames
should be a homography H

real

. We can summarize this
with the equation:

H
real

= H
error

H
sens

(1)

Given H
sens

obtained with the sensor measurements,
we can transform all the keypoints of the previous frame
to get an initial estimate of the position of the new key-
points. Then, using the fact that the ORB detector applied
on consecutive frames should return consistent keypoints
(the overlap between the two sets of descriptors should be
large), we want to find the homography H

error

that maps
the point cloud of the estimates to the point cloud of the
real keypoints.

Since we decided to remove the descriptor extractor step,
we can only match the keypoints by using geometric con-
siderations, which is the next step of this algorithm.

3.4. Naive matching

As a first approximation, we assumed that the framerate
was high enough to consider the error in the position esti-
mate of the keypoints small enough.

In that case, it sounds logical to match each estimate with
the nearest keypoint, as long the distance is smaller than a
given threshold. If no keypoint is found nearby, it is safe
to assume that this point is an outlier so we do not match it
with any keypoint in the new frame.

3



Then, once our estimates are matched with real key-
points, we can estimate the best homography that matches
the keypoints of the previous frame to these match-
ing points. This is done using the OpenCV function
findHomography that is based on RANSAC. If this
method was usually good when there was almost no trans-
lation, as we can see with the diagram of figure 3. In this
case, the estimated keypoints are close to the real ones, so
the matches given by this method are the right ones.

Figure 3. Example of a good case. The estimates are properly
matched with the real keypoints in the new frame. One of them,
which does not have a keypoint in its neighborhood, is considered
as an outlier.

However, the most blatant failure cases happen as soon
as the translation becomes non-negligible, especially in for-
ward or backward motion. An example of pure forward mo-
tion is given in figure 4, with or without matches. The radial
directions are also showed. In that case, the real keypoints
have moved radially compared to the estimated keypoints
(the estimation does not take into accounr the forward mo-
tion). Because of that, there can be some large discrepan-
cies especially as we go further from the center, and it is
very likely to match an estimate to a keypoint that is not the
right one. In that case, we will tend to neglect the radial
movement and this behavior was actually visible in our im-
plementation. As soon as we moved towards the target or
further from the target, the outline would stay more or less
at the same size, as if there. This was not an acceptable be-
havior and it led us to try to find a new method to match the
point clouds between frames.

Figure 4. Example of a failure case. Between the two frames, the
camera has gone forward, which means that the detected keypoints
are further along the radial directions compared to their position
on the previous frame. If we match each estimate with the near-
est keypoint, this leads to wrong matches for almost all the pairs,
except for the central keypoint. Clearly, this will yield a wrong
homography between the frames.

3.5. RANSAC loop using an affine transformation

model

This led us to try a new method for matching the point
clouds. By saving the positions of keypoints and estimates
in .txt files, we exported a typical sequence to Matlab
so that we could experiment on how to find the best way
to transform these keypoints. Typical techniques to find a
transformation matching two point clouds are covered by it-
erative techniques of point set registration. Among those al-
gorithms we tried the ICP algorithm (iterative closest point
matching). An easy to use library implementing this algo-
rithm, LIBICP, is given by [7]. However we did not get very
good results with ICP because of the high number of out-

4



liers that we have. Indeed, ORB keypoints are not always
that consistent in terms of response in different frames, so
the top 500 keypoints in one frame may not correspond to
the top 500 keypoints in the next one, which adds some dif-
ficulty to our problem.

In order to tackle that, we adopted a new RANSAC
scheme. The observations made during the “naive match-
ing” of the previous part (especially the failure cases)
showed that it was important to consider the scaling part of
the transformation to apply. By looking at data, it became
apparent that the homography H

error

of equation 1 could
be quite accurately approximated by a translation, rotation
and scaling. Adding shearings to this family of transforma-
tions, we get all the affine transformations. Our assump-
tion here is that H

error

will usually be well described by an
affine transformation. In figure 5, you can see an example
that shows the affine relation between two point clouds in
consecutive frames.

The RANSAC loop will then do the following:

• We select 3 points in our estimates (an affine transfor-
mation is fully described by 3 points)

• We find the nearest current keypoints to each of these
3 estimates

• We find the affine transformation that maps the esti-
mates to the keypoints

• We count the number of inliers by applying that affine
transformation to all the estimates, counting a point as
inlier if its transformation has a keypoint within a given
radius.

Finally, the best transformation is kept and will be used as
an approximation of H

error

, which will then give us the full
homography using H

sens

and equation 1.
Since speed is our main concern here, it is important to

see what will be our bottleneck in this algorithm. At each
RANSAC loop, when we count the inliers, we will search
the distance with the nearest keypoint for each of our esti-
mates. If we use brute-force matching, considering that we
have around the same number N of keypoints in both frame,
which will usually be the case, this number being 500, then
this requires in the order of N2 operations. Considering that
we will run the RANSAC loops many times, this is very
likely to become a problem. But we can use the fact that
the keypoints of the current frame will not change for all
iterations of the RANSAC loop (although the estimates will
change at each iteration) to make our search more efficient.
This 2D framework is the perfect one for techniques like
hashing, quadtrees or kd-trees that are commonly used for
that. They usually save time for each query, going from N
(brute-force) to log N . Applied to each of our estimate, we
end up doing N log N operations instead of N2, which is

Figure 5. Example of affine transformation between two frames
related by a forward motion (actual data). Top. The blue points
correspond to the real keypoints while the red points correspond
to the estimates. Bottom. Same as above, but we also added the
green points, that correspond to the best affine transformation that
maps the red points to the blue points. This single example gives
some justification to what we choose to do: even though a few
points are clear outliers, we can see the general trend: clusters of
green points will correspond to clusters of blue points, which gives
us a high number of inliers.

enough to considerably speed up the process. In our imple-
mentation, we used kd-trees, adapting the implementation
on the Rosetta Code Wiki [8] to our case.

Even with the k-d tree, the number of loops needed
to get a good estimate of the best affine transformation is
still a bottleneck, and we cannot afford to count the inliers
for many iterations. This is why we refine our RANSAC
scheme by getting rid of transformations that are clearly not
possible in our case. In general, the corrective affine trans-
formation will be a rather small correction, so we will ex-
pect the shear and scaling factors to be respectively close to
0 and 1.

We can decompose an affine transformation matrix A as

5



follows.

A =


A11 A12 A13

A21 A22 A23

�


A11 A12

A21 A22

�
=


cos ✓ � sin ✓
sin ✓ cos ✓

� 
1 m
0 1

� 
s 0

0 s

�


A13

A23

�
=


t
x

t
y

�

We can then get the shear and scaling factors m and s
from the matrix values with:

m =

A12 + A21

A11

s =

q
A2

11 + A2
12

If we enforce the constraint that m should be close to
0, and s close to 1, then we can discard all the transforma-
tions that are clearly not possible. This process goes really
fast, because it only deals with 3 points, so we can re-iterate
many times until we get a good transformation candidate.
With this constraint, it turns out that in most cases, the only
transformations that remain will be very strong candidates,
so we do not have to run many full RANSAC iterations be-
fore getting a good transformation. In order to gain some
time, we only run 20 full iterations.

In some extreme cases, for example when the overlap
between the two sets of keypoints is very small, or when one
frame suffers from motion blur, it is possible that there are
no good transformation candidates. In that case, we would
loop forever as we would not be able to complete these 20
full iterations. This is why we also give a higher bound on
the number of iterations (full or not) that we try. Once we
reach that limit (set to 10,000), if we did not complete the
20 full iterations, then we consider that we are in a failure
case and we start the bootstrapping again.

This method is not perfect but we managed to keep it
quite fast, and it succeeds for most frames as will be dis-
cussed in the next section.

4. Implementation

4.1. Experiments and results

4.1.1 Quantitative and qualitative results

Because of the nature of this algorithm, we only evaluated
the accuracy of the tracking qualitatively, while quantitative
experiments were made to assess the performance (speed)
of our algorithm compared to the baseline.

In terms of qualitative results, trying our prototype shows
a few structural problems in the current state. If the baseline
gives excellent result in terms of tracking, since it always

refers to the original target image, our iterative approach
can easily accumulate drift since it only refers to the previ-
ous frame. When most keypoints are the same between con-
secutive frames, which happens when we lock the camera
towards the same area, or if we translate our camera slowly
enough, then there are no failure cases and the drift is quite
limited (although it is increasing in time). If we translate
our camera quickly however, the affine transformation es-
timation can be quite bad and the position of the estimated
outline changes suddenly (to a wrong value). These are cor-
ner cases of our implementation that would need to be dealt
with in future versions. We will give hints in the conclusion
at how we could remove some of these problems.

Evaluating the cycle time of processing a frame was a bit
tricky because the processing time can vary a lot depending
of what the camera is pointed at (especially the texture of
the object). To simplify things, we decide to judge accu-
rately a case where the camera was standing still in front
of the target, with the target filling most of the screen. We
stood still for some time and evaluated the average frame
rate during this time. This gave us the following values:

• Baseline: frame rate of 6.8 FPS (or cycle time of 147
ms) .

• Our approach: frame rate of 9.9 FPS (or cycle time of
101 ms).

We get a decrease in the cycle time of 31%, which is to
be compared to the analysis made in the next subsection.

Even though the tracking is still not perfect, it is still
very satisfying to see that we can get a considerable im-
provement in the speed (increase of the frame rate by 45%).
It is important to bear in mind that the current failure cases
of our algorithm do not happen that often, given the frame
rate at which we are running our application. Because of
the iterative nature, even succeeding 95% of the time means
that we will fail once every two seconds and never be able to
recover after that. These issues will also need to be tackled,
outside of the scope of this project.

4.1.2 Justification of choices and time gains

This subsection serves as a justification of our choices for
the algorithm, mostly the fact that we only wanted to run
one operation at pixel level (keypoint detection). By setting
up timers that we start and stop at fixed points in our code,
we could break down the proportion of time used for each
stage in a typical cycle of the baseline algorithm (bootstrap-
ping step). The values in figure 6 were taken by pointing
at the target in a fixed position during around 30 seconds,
which, at 6 frame per second, gives an average on around
180 similar frames. This can be considered as enough to
get a good idea of the time used for each stage of the boot-
strapping step.

6



Figure 6. Breakdown of the time needed for each stage for our
baseline.

There can be some variations in different frames, and
these variations can be quite large in extreme cases, for in-
stance when there is motion blur and only a handful of key-
points are detected. In that case, it is obvious that the key-
point detection is faster, and at an even larger scale the de-
scriptor extraction and matching are also much faster. How-
ever, in most cases when this application would be used,
these values are quite representative.

The first idea that we had when we first thought about
how we could use the estimates that we had on the key-
points with the motion sensors was to speed up the match-
ing stage by only trying to match estimates to the keypoints
in the neighborhood. This could considerably decrease the
matching time, especially since we ran a brute-force match-
ing as a baseline, but even if we could almost make it instan-
taneous, we would not be able to get a decrease in the cycle
time of more than 15%, which would not really speed up
our tracking much. Since we are doing a feature tracking,
it seems that a keypoint detector was definitely necessary
on the whole image so that we could get the positions of
new features. By elimination, the only step that could be
removed was the descriptor extraction, which is what we
decided to do.

It is interesting to note that our final algorithm has a cy-
cle time of 70% the one of the baseline. This means that the
parts we removed (descriptor extraction and matching) and
that accounted for around 45% of the cycle time were re-
placed by a transformation estimation algorithm that takes
about 15% of that cycle time, which divides this step by 3
and accounts for our improvement in speed.

4.2. Disclaimer and instructions for running the

prototype

Our algorithm makes the assumption that the camera is
calibrated. In our case, we ran a calibrating algorithm and
hardcoded the values we got on our Tegra Note. If this algo-
rithm is tried on another kind of device, it will probably fail

because the camera parameters are likely to be quite differ-
ent. This prototype should be run on another Tegra Note de-
vice, where the camera parameters are probably quite sim-
ilar to the ones we developed on. It could be interesting to
see how the algorithm performs when the values of the cam-
era parameters are slightly different, but we did not study
the influence of this parameter. Since these values are only
used to get an initial estimate of the position of the new
features using the motion sensors, and the following steps
are used to refine this estimation using the positions of the
new features, we would expect that having estimates that
are slightly off would not matter much since our algorithm
handles imperfect estimates. Still, this claim was not tested
so we cannot be sure of that.

When the application is started, it is in bootstrapping
mode. If it is pointed at the target (file included with the
report), then a green outline should appear at the borders of
this target. Green circles corresponding to the features that
are properly matched should be seen briefly in this outline.
We then enter the second step. In this step, the outline is
constantly updated to match the new position of the target.
The visual elements apart from this outline are:

• Red circles: positions of the features detected in the
current frame

• Cyan circles: prior estimates of the new position of the
features detected in the previous frame (using motion
sensors purely)

• Yellow circles: final estimates of the new position of
the features detected in the previous frame (related to
the cyan circles by an affine transformation)

The cyan and yellow circles will usually be very close from
each other since the error that we correct with the affine
transformation is usually quite low, and the yellow circles
should be also very close to a subset of the red circles. Er-
rors usually happen when different features are detected in
two consecutive frames, which can be avoided by moving
slowly enough.

It is frequent to accumulate some drift, and in this case
touching the screen resets the system so that we can boot-
strap it again and get a new correct position of the outline.
To test the baseline, one can either continuously tap on the
screen or move his finger on the screen to continuously re-
set the. The “FPS” indicator is based on the durations of
the operations for the last 25 frames processed, so we can
consider its values stable in either mode (bootstrapping or
tracking) after staying 25 frames in the same mode (a few
seconds are enough).

It is important to note that the application runs almost
completely in native mode. We first used the JNI but re-
alized that there was some considerable overhead for each
frame that decreased the frame rate. In the new version,

7



Figure 7. Screenshot of our application in tracking mode.

we only use the JNI to update the current rotation matrix.
Indeed, the values of the rotation sensor, which is a vir-
tual sensor given by the sensor fusion of magnetometer, ac-
celerometer and gyroscope, are only accessible on the Java
side. All the image processing is done in C++. The applica-
tion does not run at full resolution, but at 768⇥432, which
allowed us to get better frame rates at a limited cost in res-
olution loss.

5. Conclusion and future improvements

5.1. Next steps

As mentioned above, the main weaknesses of our target
tracking algorithm is its iterative structure, and the fact that
at its current state it fails too often to be actually used for
AR applications.

Using multithreading, we could envision getting rid of
the drift by running the baseline algorithm in parallel on a
different core. In that case, one core could give us faster
results subject to drift while the other could run a slower
algorithm (baseline) that would not be subject to drift. In a
more simple architecture, we could decide to run the base-
line once every second for instance, which would not con-
siderably slow down the average frame rate. With the values
given above, running the baseline exactly once per second
would still allow us to achieve an average frame rate of 9.45
FPS.

To tackle the second problem, the robustness of the
tracking to fast translations, it seems important to make use
of the observation that our algorithm currently fails when
there is no (or very little) overlap between the set of key-
points of consecutive frames. On the other hand, we noticed
that our 500 strongest keypoints are usually localized in the
center of the frame, due to a vignetting effect. This explains
why a fast translation in the central area of the image is
likely to give a failure case. Basically, in our current algo-
rithm, we only try to match the keypoints in a limited area
to keypoints in another limited area, which is not safe if the

translation is large enough. The best way to remove this ef-
fect would be to match to the keypoints of the current frame
not only the estimates of keypoints of the previous frame
(500 points that are localized), but instead the estimates of
the keypoints of the full target image (2000 points that are
scattered on the target). In that case, the tunnel vision effect
given by the fact that we only evaluate a small part of the
image would not be as much of a problem. Among the ideas
that we have to increase our algorithm, this one sounds like
the most promising and it is definitely the next direction that
we will go towards in the future.

Other ways to make the RANSAC loop more efficient
could be to include more heuristics to discard some affine
transformations early enough. Some ideas include:

• using the scale and orientation of keypoints between
two consecutive frames to see if the random estimates
we select are likely to match with their nearest key-
point ; this should work if these values are consistent
enough between consecutive frames

• using the accelerometer values to check consistent
translation values

In that case, it could be interesting to also come back to the
claim that H

error

can be approximated as an affine transfor-
mation, and instead to implement a full homography trans-
formation. Although it needs 3 matches instead of 2, if we
have good enough heuristics to discard bad homographies
early, we might be able to sustain this more complex model.

Finally, a last idea comes from the fact that we can afford
to run only a few RANSAC loops. In that case, if a trans-
formation is acceptable, the last resort would be to extract
descriptors for the 3 tentative matches (6 descriptors) and
see if they match. If they do, then we are pretty sure that
the proposed transformation is a valid one. This operation
may be costly but could still be interesting since it will be
limited to very few points.

5.2. Last words

Although it was a small scale one, it was really interest-
ing to implement a full tracking algorithm, from the recog-
nition of the object to the actual positioning of the outline of
the target on the viewfinder. This project required to learn
many different aspects of the intricacies of developing in
OpenCV and Android using the native code but the results
turned out quite satisfying for its scope. We are planning to
push this code further, starting by trying a few of the pro-
posed improvements above, so that we could turn it into a
full augmented reality application. Capabilities of the cur-
rent mobile hardware are already quite stunning and will
keep getting better, which is already by itself a very mo-
tivating thought given the applications that will be smartly
making use of these.

8



6. Thanks

I would like to thank Roland Angst and David Chen for
their support and precious suggestions along this project.

References

[1] S. Gammeter, A. Gassmann, L. Bossard, T. Quack, L.
Van Gool, “Server-side object recognition and client-
side object tracking for mobile augmented reality,”
CVPR, 2010.

[2] S. You, U. Neumann, “Fusion of Vision and Gyro
Tracking for Robust Augmented Reality Registration,”
Proceedings of IEEE VR2001, pp. 71-78, 2001.

[3] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond,
D. Schmalstieg, “Real-Time Detection and Tracking for
Augmented Reality on Mobile Phones,” Visualization
and Computer Graphics, 2009.

[4] D.-N. Ta, W.-C. Chen, N. Gelfland, K. Pulli, “SURF-
Trac: Efficient Tracking and Continuous Object Recog-
nition using Local Feature Descriptors, ” CVPR, 2009.

[5] D. Sachs, “Sensor Fusion on Android Devices: A
Revolution in Motion Processing,” 2010, accessible at
http://youtu.be/C7JQ7Rpwn2k.

[6] Android SDK documentation, “Composite sensors”
page, accessible at https://source.android.com/devices/
sensors/composite sensors.html.

[7] A. Geiger, P. Lenz, R. Urtasun, “Are we ready for
Autonomous Driving? The KITTI Vision Bench-
mark Suite,” CVPR, 2012 ; LIBICP code accessible at
http://www.cvlibs.net/software/libicp/.

[8] Rosetta code, “K-d tree,” page accessible at
http://rosettacode.org/wiki/K-d tree.

9


