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Outline

e Scale distribution

* Presentation of two different approaches and
experiments

» Analysis of previous results
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Motivation

« Typical image retrieval applications: similar
resolution in database images and queries

« Performance drops when the resolutions are very
different (high-res database image vs. low-res query)
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« OK for some applications (product recognition), not
ideal for others (large painting recognition)
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Scale distribution — derivation

« Goal: Find the average distribution of scales for an
“ideal” feature detector

» Hypotheses: continuous representation of the scales + a
few assumptions on the feature detectors
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Scale distribution — derivation

p(s) o< 1/s®
F(s)=] 0 if s < so
1 - So®/S? If s 2 So

* F(2s0) = 0.75 — Qualitative justification

50% downsampling

3 N/4 features

Correspond to features
of scale s = 2so0 on

original image

N features

{so = s < 2s0} contains N-N/4 = 3N/4 features
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Dataset used for the experiments

* Images extracted from a public art repository (Web Gallery of
Art): more than 30,000 images

«  We keep cropped regions of fixed size (17,146 images at
resolution 1024x768)

« We generate queries of half the size of the database images
(512x384) by rotating/scaling/translating
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Scale distribution — experiment
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Scale distribution — results
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Scale distribution — results
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« Power law: a bit of a stretch, but gives a rough idea
of the behavior
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Baseline (single REVV)

» Aggregate 250 SURF features with coarsest scale
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Tile based approach

« Each DB image is represented by 5 tiles

coarse

REVV

SURF !

fine ¢ \

coarse

REVV -2 Get rank

T (best tile)
SURF X

5N REVV
comparisons

fine

Multi-resolution image recognition 11



Scale based aggregation — Idea

« Main conclusion from previous analysis: most features
have a scale in the interval [s,, 2s]

— 75% in theory
— ~70% in practice (depends of size of query)

« Aggregate features according to scale domains and
position
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Scale based aggregation — Idea
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Scale based aggregation — Idea
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Scale based aggregation — Experiment

« Database side: case of limited scale variation, we only
consider 2 levels

S < 2s, s < 2s,

s > 2s,

s <2s, s <2s,

« Query side: we only have 2 bins (s > 2s, and s < 2s;)
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Scale based aggregation — Experiment
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Scale based aggregation

 How do we merge the two lists?
1. By cheating: we take the “best” rank in each list
2. By using the correlation scores to re-rank the results

3. By using a linear combination of the best correlation score
for each image
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Multi-scale experiments

« Zoom = 2x (query represents ~25% of original image)
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Multi-scale experiments

« Zoom = 1.5x (query represents ~44% of original image)
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Multi-scale experiments

« Zoom = 1x (query represents ~100% of original image)
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Analysis of results

e Current problem of our approach: hard-binned scale
(assumes good reproducibility of scale extraction)

 Justification of the good results obtained in the tiling
approach: REVV and surface overlap
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Scale reproducibility — experiment
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Scale reproducibility — results
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Scale reproducibility — results
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REVV and surface overlap — experiment
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REVV and surface overlap — results

Precision at rank 10 for each type of tile
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——> Strongly correlated with area overlap
——> 50% overlap: ~90% precision at rank 10

—> 25% overlap: ~70% precision at rank 10
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Conclusion of multi-resolution exploration

« Considerable unsolved issues
— Scale reproducibility (try other values of thresholds)

— Increased cost of running 2 queries, but no real gain in non-
optimal conditions

« The simpler (tile-based) approach is “too good”
— Shows the robustness of REVV

« Hybrid approach?
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Conclusion of multi-resolution exploration

« Hybrid approach

s >2s, S <2sq s <2s,
query s < ZS(queLry S < 2s,
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Conclusion of multi-resolution exploration

« Hybrid approach

s > 2s, S > 2s, s <2s, s <2s,
query s > 2s, query |s < 2s,
23, So
€ $ : $ |
< | :

——> drawback: doubles the storage requirement

——> possibility to reduce computation amount
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