
CS229 Project Report

Polyphonic Piano Transcription

Mohammad Sadegh Ebrahimi sadegh@stanford.edu

Stanford University

Jean-Baptiste Boin jbboin@stanford.edu

Stanford University

1. Introduction

In this project we want to employ machine learning
algorithms to extract the notes that are played in a
polyphonic piano song. There has been a lot of re-
search on music transcription recently, but most of
them are aimed at monophonic identification. In this
project, we looked at the problem in a more gen-
eral way and tried to improve the performance us-
ing di↵erent techniques(1). One of the significant dif-
ferences between using a monophonic and polyphonic
song is that in polyphonic identification we cannot use
the information that at most one note is playing, so
techniques using multiclass classifiers are not applica-
ble. Depending of how we apply our algorithm, we
found that there was a trade-o↵ between sensitivity
and specificity as we will cover in this paper. Even-
tually we tested our system by playing back those ex-
tracted notes by piano and then recognize that music
with human ear. Although there is still a lot to do for
this subject, the primary results were quite impressive
and promising.

2. Dataset and Preprocessing

First we needed some polyphonic piano songs in a
sound file (wav) along with the corresponding list of
notes so that we could use supervised learning algo-
rithms for classification. One good option is to use
midi files which contain the information about all the
notes played in a song: their pitch, the exact timing
when they are played, their duration and even their
velocity, although we did not use this last item. Us-
ing a ‘soundfont’ associated to an instrument (in the
rest of the text we used the same piano ‘soundfont’),
it is then easy to produce the wav file corresponding
to these notes and to train the algorithm based on
that. This rendered wav file is used as our observa-
tions, and the information contained in the midi file

as our ground truth.

One famous dataset of polyphonic piano songs is
MAPS (2) so we also decided to use it in this project.
From the MAPS package we chose 60 songs in the
MAPS ENSTDkAm 2 and MAPS SptkBGAm 2 folders.

We also used Ken Schutte’s Matlab package to work
with midi files (3). This package takes a midi file and
parses it so that we can have access to the notes in
a more friendly way. We produce the feature vectors
by slicing the song wave into 100 ms intervals and for
each interval we take the FFT. This makes sense be-
cause the pitch of a note is highly correlated with its
frequency, so we would expect the FFT to give us more
information on the pitch than the actual signal. For
our learning algorithm we actually do not care how
loud or low is the note played, so we can normalize
the energy spectrum (4). For that matter we take the
FFT of each 100 ms section and then calculate the
norm of the FFT vector. For normalizing we need to
divide this value by the sum of the vector elements.
But there are many small elements in the energy spec-
trum that actually do not matter and only clutter the
data. so we apply a threshold equal to 10% of the
maximum value of energy spectrum and then we nor-
malize it to one. The figure 1 shows the raw feature
vector and the processed one. The sampling rate is
equal to 44.1 KHz.

Figure 1. Thresholding applied to the feature vectors



Polyphonic piano transcription

3. Problems of dimensionality : PCA

Now that we have a full dataset, we can start process-
ing the data. The basic idea to solve our problem is
to view it as a classification problem. Each segment of
100 ms has a certain number of notes that are playing
during that interval. Thus, we can see the output as
binary with respect to one note : either this note is
played, or this note is not played. If we train a binary
classifier for each note, we should be able to tell for
each segment if this note is played or not. Putting
the information for each of the classifiers together, we
could tell the list of notes that are played during that
interval.

The first problem that we have here is that we have a
really huge amount of data. We use half of the total
data as our training dataset and it already includes
more than 80000 intervals of 100 ms. Moreover, our
feature space is also very large. Given that we had
4410 coe�cients after applying the FFT to each seg-
ment, our space is R4410. It means that we have to
deal with very large matrices and that most of the
classification methods that we know will not work as
such. This is why the first step that we will apply to
our data is a PCA, so that we can drastically decrease
the dimensionality of our feature space.

We run that PCA on a randomly sampled subset of
20000 examples. This number was chosen because it
makes the PCA run quite quickly, in just a couple of
minutes, while still being representative of the whole
subspace. The justification behind the PCA is that
since there are only a limited number of notes, we could
expect the data to lie on a much smaller dimensional
space than the initial one.

Figure 2 shows the log-magnitude of the singular val-
ues of the data matrix used for the PCA, sorted de-
creasingly. As we can see, there is a jump after 700
singular values, which verifies our assumption that the
feature vectors lie on a smaller subspace.

We restrict our space to no more than a few hundred
dimensions, which allows us to run logistic regression.
For the logistic regression, we can then apply Newton’s
method, which reaches convergence after very few it-
erations. The reason behind that is that because of
the PCA, the Hessian matrix is still small enough to
be inverted fast, and running a gradient descent was
much slower.

In later versions of our algorithm, we noticed that all
700 dimensions were not needed and we settled for a
choice of 300 features kept after the PCA. This is an
empirically supported choice as we can see in figure
3, where we plotted the sensitivity of a run our full

Figure 2. Singular values of the data matrix

algorithm (the next steps are described later) for the
45 notes that are played the most. As the number
of features grows, the sensitivity increases too, which
makes sense, but we can see that we get diminishing
results and after around 100-200 features, there is not
much improvement anymore. We get exactly the same
kind of plots when we look at the specificity. We fixed
our number of features used to 300 (the dimensions
associated to the 300 largest singular values), which
still gave a good increase in speed while training our
algorithm without decreasing the performance.

Figure 3. Sensitivity of the 45 most played notes with dif-

ferent dimensions of feature space

4. Dealing with unbalanced sets

If we look at figure 4, which shows the appearance fre-
quency of the notes in the data that we set aside for
training, we can see that all the notes are not equiprob-
able, and the notes in the medium range appear more
often than the lower and higher notes. Some of the
lowest and highest of the MIDI range did not even ap-
pear in our data, or very rarely. This fact may seem
obvious but it means that we cannot deal with the



Polyphonic piano transcription

notes the same way if we want accurate predictions.
Even the most frequent note only occurs in 15% of the
samples, so if we do not try to correct the balance, our
classification may be biased towards negative exam-
ples, and this may considerably decrease our sensitiv-
ity, since many positive examples will be misclassified.

Figure 4. Appearance frequency of the notes in the half of

the dataset used for training

The problem of unbalanced datasets has many appli-
cations and has been studied many times in the litter-
ature. There are two basic ways to deal with this prob-
lem : sub-sampling and over-sampling.(5) If we have
many more negative examples than positive examples,
sub-sampling implies that we construct our training
set by taking all the positive examples, but by sam-
pling only a fraction of negative examples. In over-
sampling, we take all our negative examples and we
add several instances of the positive examples to bal-
ance the training set. These two methods have been
shown to be asymptotically equivalent. In our case,
sub-sampling (illustrated figure 5) looks more appeal-
ing because we already have a large amount of data,
so it is not a problem to reduce it by sub-sampling the
negative examples.

Using this technique, we can construct a di↵erent

training set for each note, in which that note will
be present in a fixed ratio of training examples. This
is very useful for getting comparable performances for
di↵erent notes, which was not the case before : our
performances dropped as the note became less frequent
in the training data. By adjusting the ratio of posi-
tive examples, we will see in our next section that our
algorithm can perform di↵erently. Also, we chose to
address only the notes that appeared more than 2000
times in the totality of our training data, because we
do not have enough information about the other notes.
This only rules out 8% of the notes that appear in our
dataset (in terms of number of intervals), which we de-
cided was negligible in our application. It is important

Figure 5. The boundary will be shifted depending if we use

all the negative examples or only a fraction of them (sub-

sampling)

to note that this limitation could easily be avoided if
we had more data for these notes that appear less fre-
quently.

5. Two di↵erent approaches in

sub-sampling

5.1. Standard method

The first approach that we decided to take was to use
sub-sampling at a ‘low e↵ect’ setting : we just used
it to equalize the ratio of positive examples in each
of the training sets corresponding to the notes. More
explicitly, since the most frequent note appears in 15%
of the intervals, we can use this ratio for the other notes
so that they also appear in 15% of the intervals of their
training sets. The expected advantages of this method
is that we still keep many negative examples so we still
expect to have a high specificity. The inconvenient is
that 15% is still quite low, and our classifiers may be
biased towards negative examples, which will decrease
the sensitivity.

In practice, we observe exactly these e↵ects on our
testing set, as we can see qualitatively on the piano-
roll corresponding to this method applied to a small
part of our testing set (figure 6b). To assess the perfor-
mance quantitatively, we use specificity and sensitiv-
ity because they are good quantities for understanding
how well we classify negative examples (specificity) or
positive examples (sensitivity). This will be used con-
sistently for the rest of the report. For this standard
method, we get a specificity of 97.50% and a sensitivity
of 71.45%.



Polyphonic piano transcription

Figure 6. Data put in piano-roll shape : each line corre-

sponds to the timeline of one note and each pixel on the

horizontal axis corresponds to a di↵erent interval of 100

ms. A white pixel symbolizes the presence of that note

in the interval while a black pixel symbolizes its absence.

These piano-rolls correspond to the same part of a sound

file and are respectively, from top to bottom : (a) Ref-

erence data (ground truth) ; (b) output of the standard

method ; (c) output of the conservative method without

post-processing ; (d) output of the conservative method

with post-processing.

5.2. Conservative method

A second approach is to use sub-sampling at a ‘higher
e↵ect’ setting : we push the ratio of positive examples
higher, at 20% instead of 15%. This means that we will
tend to label more intervals as positive, so we will get a
higher number of false positives (lower specificity), but
also a lower number of false negatives, which means
the sensitivity will be improved. If we look at the
piano-roll of this method (figure 6c), we can see that
this conservative approach makes the output very clut-
tered, which confirms our intuition.

Up to now, we have only treated the feature vectors
corresponding to each interval as independent, and we
can expect that adding a constraint on consecutive in-
tervals may give us better results. This is what we
attempt with the output of this method, as a post-
processing step. We call x0 2 Rn the binary vector
corresponding to the intermediate (cluttered) result
for one note (one line of the piano-roll). We want to
find the binary vector x that is close enough to x0 but

that minimizes the number of transitions. This corre-
sponds to the multi-objective problem of minimizing

J = kx� x0k2
2 + µkDxk2

2

where D is the square matrix with �1 on its diagonal
and 1 on its upper second diagonal so that Dx returns
the di↵erence of consecutive elements of x, and µ is
a parameter that chooses the relative weight between
our two objectives.

The norm should be the l1-norm but it is equivalent to
the squared l2-norm since our vectors only have values
in {�1, 0, 1}. This problem is not easy to solve if we
constrain x to a binary vector but we can solve this
problem easily by relaxation : we solve in Rn, and then
we threshold to get a binary result. We can even solve
it very fast if we consider x as a circular vector because
in that case we can express our problem as hµ ⇤x = x0

where hµ is a n-dimensional vector depending on µ

and ⇤ is the circular convolution, and then finding x is
easy by taking the FFT of the expression above.

Figure 6d shows the result of this post-processing step
using 6c as the input, for µ = 1.78. We can see that
we can get rid of many of the isolated false positives,
while still keeping the true positives. On figure 7 we
show the mean specificity and sensitivity associated to
di↵erent values of µ. For very low values of µ, the post-
processing step has no action. For very high values
of µ, transitions are strongly penalized and the best
move is to take a zero x. In between, there seems to
be an optimum for log10 µ 2 [�0.1, 0.3] where the sen-
sitivity slightly decreases but the specificity decreases
considerably. This is the zone where we remove the
outliers but not too many of the true positives, and so
we take a value in this interval for our postprocessing
step (after confirmation by testing and verifying we
chose log10 µ = 0.25).

Figure 7. Sensitivity (left) and specificity (right) for di↵er-

ent values of µ (logarithmic scale).

For this method, we get a specificity of 96.92% (com-
parable to the standard method) but an improved sen-
sitivity of 76.12%. In the end, this method seems to



Polyphonic piano transcription

be more promising if we want to emphasize on having
a higher sensitivity whithout sacrificing specificity.

6. Generalized method and final results

In fact, by choosing a di↵erent value for the ratio of
true positives when we sub-sample, we can get di↵er-
ent performances. If we prefer to sacrifice sensitivity
in order to have fewer false positives, another option is
to use a lower ratio, like the one we used in the stan-
dard method and to apply the post-processing. This
gives a specificity as high as 98.81%, but a sensitivity
of 68.59% only. In fact, by tuning this ratio as a pa-
rameter, we can span a whole trade-o↵ curve given in
figure 8.

We can see here that the post-processing gives in fact
better results in both sensitivity and specificity, if we
adjust the ratio of sub-sampling accordingly. The
points corresponding to the two methods discussed in
the previous part are circled.

Figure 8. Trade-o↵ curve of our two performance measures

by taking di↵erent ratios in the sub-sampling step, from

15% (point on the right of each curve) to 23% (point on

the left)

Qualitatively, when we listened to our actual results,
we found that it is better for the ear to be on the
higher-specificity / lower-sensitivity side of the trade-
o↵ curve : getting rid of false positives is much more
important than recovering all the notes in their full
length because our brain can easily reconstruct the
missing parts, while the outliers can be heard very
easily.

7. Conclusion

It was interesting to develop a full processing pipeline
for this algorithm, because we could deal with many
di↵erent aspects of machine learning, from data selec-

tion to classification or error measurement. Because
of our time limitations, we could not try as many of
our ideas as we would have wanted for each section
of the algorithm and we focused on having a full al-
gorithm working. Di↵erent ideas that we could have
added to make our algorithm even better included :
trying a di↵erent classification algorithm, like a SVM
; improving our time analysis based on the fact that
notes are usually played on a certain tempo ; using a
prior probability on the appearance of the notes using
the key used in the song ; etc. However, on the whole,
the output of our algorithm sounded very similar to
the original music, and we were quite happy with the
results that we got.

References

[1] N. Boulanger-Lewandowski, Y. Bengio and P.
Vincent, “Modeling temporal dependencies in
high-dimensional sequences: Application to
polyphonic music generation and transcription,”
ICML, 2012.

[2] V. Emiya, R. Badeau and B. David, “Multipitch
Estimation of Piano Sounds Using a New Prob-
abilistic Spectral Smoothness Principle,” IEEE

Transactions on Audio, Speech, and Language

Processing, vol. 18, no. 6, pp. 1643-1654, 2010.

[3] http://www.kenschutte.com/midi

[4] J. Nam, J. Ngiam and H. Lee, “A Classification-
Based Polyphonic Piano Transcription Approach
Using Learned Feature Representations,” ISMIR,
pp. 175-180, 2011.

[5] H. He and E. Garcia, “Learning from Imbalanced
Data,” IEEE Transactions on Knowledge and

Data Engineering, pp. 1263-1284, 2009.


