
Plane rectification in real time on an Android device

Final report

Jean-Baptiste Boin
Stanford University
jbboin@stanford.edu

1. Introduction

The development of reliable keypoint detectors, like the
Harris point detector or the difference of gaussians, com-
pact descriptors, as well as techniques based on scale-space
theory, like SIFT [1], made it possible to do image-based
search on a large scale. The latter method, which com-
bines detector and descriptor, became very popular in many
image retrieval applications. Its scale-invariance, rotation-
invariance, and even its robustness to slightly different light
intensities due to the use of gradients, give it many assets
which justify its popularity. However, it is to be noted that
the SIFT descriptor is not viewpoint invariant. Taking the
picture of a same building façade from two very different
viewpoints can seriously decrease the performance of the
SIFT method and in that case only very few matches will be
found. See figure 1 for an illustration of this phenomenon.
This can be a problem if we want to recognize a building
in an image taken from a very different viewpoint than the
image present in the database.

Our project aims at finding a way around this limitation
in the case of simple vertical planar geometry, which is an
assumption that should hold for most of the man-made sur-
faces that surround us. As will be described later, the main
idea is to find the vanishing point of the plane formed by
horizontal lines. The main highlight of the project is that
we want to study ways of doing our vanishing point search
in real time since we want to implement it on an Android
device. It will be useful to augment the data from our cam-
era with the measurements from other sensors that a reg-
ular Android device can deliver. We will see for instance
that knowing the gravity direction already partially solves
our problem. Figure 2 gives a high-level overview of our
project.

The ultimate goal of this project was to get a running
real-time prototype on an Android device. If pointed at a
vertical surface (wall, poster, painting, etc.), the device de-
tects the orientation of the plane and corrects the view ac-
cordingly. This should be done within a few seconds.

Figure 1. Typical case of failure of SIFT due to very different view-
points : only 15 matches are found. Credit : J.M. Morel, G. Yu ,
ASIFT: A New Framework for Fully Affine Invariant Image Com-

parison

2. Previous work and justification of our ap-

proach

2.1. Review of previous work

A few ways to “augment” SIFT to make it viewpoint in-
variant have been proposed in the litterature. The most ob-
vious one would be to augment our database with a few
additional views that would allow us to have matches from
any viewpoint. Indeed, SIFT was shown to be still quite ro-
bust to moderate variations of angles (as we showed it in out

1



Figure 2. Overview of our project methodology. The core com-
ponent lies in the 1D vanishing point search, and we propose 3
different approaches for that.

preliminary experiment, presented in the next subsection).
The drawbacks are obvious :

• our database will grow substantially as the number of
views per object/landmark increases

• depending of the way our data is acquired, it may be
more expensive or impossible to acquire these addi-
tional poses

• the size of the database is not the only issue : more
data means more matches to do if we want to compare
our query image to all of our images

In some applications, this approach may not be scalable.
For example, on mobile devices the computing resources
and memory are usually limited, so having to perform more
matches or storing a larger database can become real issues.

Another way to go around the limitation of SIFT is to
augment SIFT by making it affine invariant. A notable ex-
ample is ASIFT[2], which works for any kind of plane. The
main feature of this method is that if we want to match two
images, these images will be affinely distorted in different
directions and scales properly chosen, and then the algo-
rithm will attempt to find the pair of images with the higher
number of matches. This method works well but requires
extracting SIFT descriptors from many additional images,
so it would not perform very well on a mobile device.

In theory, if we have only one view of the plane in our
database (view that we can consider frontal), the most effi-
cient approach would be to perspectively distort our query
image so that the plane is seen from the frontal view again.
After the pre-processing, the two planes should have a very
similar appearance and it would be easier to match them us-
ing SIFT. This project proposes 3 different methods to solve
this pre-processing rectification step for vertical planes, us-
ing the data that we can get from a mobile device.

It is important to mention that we have not find evidence
of research being done in vanishing point estimation by us-
ing the gravity direction. Gravity direction has already been
used in SIFT to align the descriptors with the gravity, so that
they would be consistent between 2 images [3], but not for
out current task yet.

2.2. Preliminary experiment validating our ap-

proach

As a preliminary experiment, we tried to see if recti-
fying an image actually led to improvements in terms of
feature matching. To do that, we generated a virtual view
of a given textured surface, similar as the images in fig-
ure 2. The camera would then be rotated to see the surface
from many different azimuth angles (the parametrization of
our angles will be defined later in this report) so that we
would get views from different slanted angles, starting with
a camera facing the plane and ending with a camera seeing
it from its profile. We then ran SIFT on these images and
counted the number of geometrically consistent matches be-
tween the image and the original texture. Since we know the
exact position of the camera, we can also perfectly rectify
the view as if we were facing the plane, as will be detailed
later on. We can then run the same SIFT based experiment
and compare the number of matches in both cases. The re-
sults are shown in figure 3. As you can see, the number of
matches sees an important drop as soon as the optical axis
of the camera has an angle of more than 30

� � 50

� with the
normal of the plane. This confirms what was said before.

But it is equally interesting to see that rectifying the im-
age considerably slows down the drop, and even at angles of
60

�, the performance drop is still very limited. This exper-
iment shows that if we know the orientation of the plane in
our query image and the orientation of our database image
to compare it with, it is very interesting to rectify the query
image so that we can get more significant matches, espe-
cially if this rectification can be done in almost real-time
which would not add considerable overhead to our image
search.

Figure 3. Result of our preliminary experiment

3. Technical part

3.1. Theoretical aspects of plane rectification, sum-

mary of our method

3.1.1 Reducing the problems to one dimension

The interesting point about using a modern mobile device is
that we have access to not only the image taken by the cam-

2



era, but also to many different measurements given by the
sensors of the device (accelerometers, gyroscopes, magne-
tometer). It seems that the most helpful measurements are
the static values given by the accelerometers. If we consider
that the device is stable while the image is captured, then the
only acceleration would come from the gravity, and thus we
would know its direction. We also assume that the measure-
ments are not noisy, so the gravity direction is known ex-
actly. Using the parametrization of figure 4, we are able to
know the twist and the elevation of the camera. Only the az-
imuth angle remains unknown and this problem is reduced
to a one-dimensional problem. This is the reason why we
only consider the rectification of vertical planes, where the
normal has only one degree of freedom around the (known)
vertical axis.

Figure 4. Parametrization of our angles. The elevation angle is the
angle e, the azimuth angle is a. For clarity, the twist (rotation of
the camera about its optical axis) is not represented.

One could argue that we could use the magnetometer
(compass) to have an estimate of the azimuth angle. How-
ever, we cannot assume that we know the orientation of the
plane at first. Also, if the accelerometer values are usually
quite accurate, the values given by the magnetometer are not
always as accurate, and it would be more risky to consider
these values as perfect.

3.1.2 Rectifying a perspectively distorted image know-

ing the gravity direction

It is interesting to notice that if we consider that we know
the calibration matrix, knowing the twist and elevation an-
gles allows us to create a virtual view where the position of
the camera does not change but where it is rotated so that
the elevation and twist are set to 0. In other words, the view
is partially rectified as the image plane becomes vertical.

Correspondances of points on a plane between two cam-
era views a and b are related by the 3D plane to plane
equation[4] :

ap = K
a

·H
ba

·K�1
b

· bp

with ap and bp the correspondance pair in the image
plane of camera a and camera b respectively ; K

a

and K
b

the calibration matrices ; and H
ba

the homography matrix
from b to a. This homography matrix can be expressed in
terms of the transformation between a and b as well as the
parameters of the plane :

H
ba

= R� tnT

d

where R is the rotation between a and b, t the transla-
tion between a and b, n the normal of the plane and d the
distance between camera a and the plane.

In our case, t will be zero since we just want b to be
a rotated version of a, and K

a

and K
b

will also be equal
to K, the calibration matrix of our original camera, so the
formulas just become :

ap = K ·H
ba

·K�1 · bp

H
ba

= R

So, once we get the different parameters of our rotation
matrix, rectifying the image is straightforward since we just
have to invert the formula above bp = K ·R�1 ·K�1 · ap.

At this point, one angle is still missing in our rotation
matrix (azimuth), but we can partially rectify the image as
a first step. This is what we do here. We can notice that
after this step, the vertical direction is completely rectified :
a vertical line in world space should appear vertical in this
partially rectified view, as we can check on figure 5.

Figure 5. Original image (top) and partially rectified image (bot-
tom), in the case of a view with a 0� twist, 20� elevation and 30�

azimuth.

Now, let’s try to find the position of the horizon line in
this new view. We define two coordinate systems in our

3



world space, one associated to the plane (origin at the inter-
section between the optical axis of the original camera and
the plane), and another one associated to the virtual camera.
A top view of these coordinate systems is given in figure 6.
Our partial rectification ensures that y

c

= y
p

(the z axis is
not vertical for consistency with the usual conventions on
camera coordinate systems, like the one used in OpenCV).
Putting aside the translation component, the camera coor-
dinate system is in fact the rotation of the plane coordinate
system about the vertical axis ; the angle of rotation is the
azimuth angle we are looking for.

Figure 6. Coordinate systems of the plane and the camera, top view
(the vectors yp and yc, which happen to be equal to one another,
are pointing downwards).

In the camera coordinate system, a horizontal line has the
form [a, 0, b, 1]

T , so the corresponding vanishing points
can be parametrized by an angle : [� cos ✓, 0, sin ✓, 0]T .
To get the horizon line, we just need to multiply two of those
using the cross product. This gives (up to a scaling factor) :

l1 = [0, 1, 0, 0]T .

We can now project using the virtual camera matrix. In
that coordinate system there is no translation or rotation so
the horizon line is just given by

l
hor

= K · [0, 1, 0]T .

If we translate the image coordinate system at the princi-
pal point and we make the assumption that the camera has
zero skew (which is an assumption that holds in modern
cameras), then K is diagonal so, up to a scaling factor, we
have l

hor

= [0, 1, 0]T . In other words, the horizon line con-
tains all the points so that y = 0 in the image coordinate
system. In short, the horizon line is just the horizontal line
going through the principal point, which makes its detection
automatic once we have the sensor information.

Now, to estimate the azimuth angle a, a convenient way
would be to use the horizontal lines that may be present on
the plane. In that case, in the 3D camera coordinate system,

the vanishing point would be v = [� cos a, 0, sin a, 0]T ,
and so its projection in the image would be

p = [�f
x

cot a, 0, 1]T .

This formula directly relates the position of the vanishing
point with the orientation of our plane, which is what we are
looking for.

To summarize, our rectifying approach consists in par-
tially rectifying the image to make the horizon line very
easy to parametrize. Then, we can run a one-dimensional
search on this line to find the vanishing point of our plane,
and to finish, we can find our final angle a using the for-
mula above. We can then fully rectify our image using the
3D plane to plane equation.

3.2. Three ways to find the vanishing point

We developed three different methods to find the vanish-
ing point of a surface. We did not develop them at the same
level of polish but they all try to meet different goals.

3.2.1 The line-based approach

The first approach we tried is probably the most logical one.
On a surface where some horizontal lines are dominant, the
basic approach would be to detect the dominant lines, and
see where they intersect. This is what we started to imple-
ment in Matlab. After the partial rectification, that ensures
that the vertical lines are rectified and that the horizon line
is known, we first run a Canny edge detector on the im-
age, and then we detect the most prominent lines using the
Hough transform. After populating the accumulator array
by processing all the edge pixels, we look at the highest
peaks, which correspond to the dominant lines in the im-
age. We then go back to our original image and segment
these lines into segments. At this point, we know the main
segments in our original image, as well as the horizon line.

But if we expect that some of these lines will indeed in-
tersect on the horizon line, we cannot make the assumption
that all of them do, since the plane will not only have hori-
zon lines in world coordinates. So we are facing with a
problem of having many outliers. One way to deal with that
is to have a running point on that line and to estimate at each
position the likelihood that this point is the vanishing point.
For each point, we loop through all the lines and add a high
score if the point is almost aligned with it, while the score
will be low if it is not. Figure 7 defines the angle parameter
that we used for this approach. M2, which has lower angles
than M1, will thus receive a higher score than M1 and will
be considered more likely to be a vanishing point.

Another refinement that we added was to consider the
length of the line. What we noticed when experimenting
with the above algorithm was that it was very sensitive to
noise, since all the detected lines are used in the same way.

4



Figure 7. Exemple of a configuration where the red line is the hori-
zon line, the two blue segments are the ones detected on the image,
and M is the running point, shown in two different positions.

But on real data, we would usually have clear long hori-
zontal lines (edge between a wall and the ground for exam-
ple), and many other unreliable smaller lines, that could be
in many different orientations. If a line is very short, then
pixel quantization makes it easy to badly estimate its orien-
tation. Figure 8 gives a good idea of this phenomenon. In
that case, when estimating the score, we should take into ac-
count the fact that values of ✓ not that close to 0 should not
be penalized too much. However, the orientation given by
a long lines is much more reliable, so we would expect the
score to be very high when ✓ is close to 0, and to drop very
fast as ✓ increases. A good way to model that was by using
gaussian distributions with a standard deviation inversely
proportional to the length of the line. The distribution cor-
responding to a long line will be very peaked around ✓ = 0

while a shorter line will have a more flat distribution.
A last problem that we face is that the horizon line is

infinite, so we need to sample it in a smart way. Given the
formulas we found above, it made sense to sample it for all
the

x
k

= f
x

tan(✓
k

)

where the angles ✓
k

would be linearly spaced in the interval
(⇡/2,⇡/2). Finally, after we ran this algorithm for every
point of the horizon line that we sampled, we can look at
the sum of the scores for each point and the higher one will
give the vanishing point.

As we will see in the results section, this method has
the advantage of being quite accurate. But as the reader
may have noticed, many operations are involved, and our
dimensionality reduction that we got from using the gravity
direction may not have been exploited as much as it could.
In fact, running a full Hough transform on our edge image

Figure 8. This diagram shows the uncertainty in orientation de-
pending on the uncertainty on the endpoints of a line. If this un-
certainty in position is in the order of � = 1 pixel, then the un-
certainty in orientation is given by ✓ = arctan(2�/L) ⇡ 2�/L,
which justifies our choice of using a gaussian with standard devi-
ation proportional to 1/L.

is expensive and it is the bottleneck of this method. This
led us to consider if there would be a way to do without
this Hough transform. This leads to the second method, the
point-based method.

3.2.2 The point-based approach

Running a full Hough transform allowed us to select the
edge pixels that were on lines and to discard the others. This
is something that is desired if the main goal is accuracy,
but maybe not if it is speed, since it involves a computation
intensive step. This second approach will consider all the
pixels directly, without running a search for lines first.

In the previous approach, we used the orientation that
we found when we looked for lines in the image. But if a
point is on an edge, then its gradient should be orthogonal
to the edge direction, which gives us a rough estimate of
the orientation of the edge. And this estimate comes at al-
most no cost since computing the gradient is actually part
of the edge detection. Using a scoring scheme similar to the
previous method, we would expect that the contributions of
pixels on an edge would add up to increase the likelihood
as wanted.

This time, we used a distribution for the scores that was
only dependent on the angle ✓ between the local edge ori-
entation and the line joining the running point on the line
of horizon and the pixel considered. Since this method is
much more noisy (the gradient orientation is not that accu-
rate), we chose a very flat distribution for our scores. The
upsides of this method is that we ge a higher speed, but it
comes at the cost of accuracy as we will see in the results.

5



Figure 9. Every edge pixel contributes on the line

3.2.3 The texture-based approach

This last approach is the least polished one, but it still gave
some interesting results. In this approach, we try to ask the
question of what would happen if we do not have a plane
with strong horizontal lines but instead some kind of tex-
ture, like an irregular brick wall or a wallpaper. If we par-
tially rectify our image, we know that the vertical direction
is properly rectified and that there is no perspective distor-
tion on that column for the points of the plane. If the plane
has a texture with a typical scale, it means that this scale
will be preserved within a column. However, the interesting
point is how different columns compare : indeed, because
of perspective distortion, the typical scale should decrease
as we get closer to the vanishing point, and this decrease is
linear, as we can see on figure 9.

Figure 10. The scale of the pattern goes down until it reaches 0 at
the vanishing point.

Using this observation, we could be able to detect the
position of a vanishing point by just looking at the typical
scales of all the columns and trying to fit a line through
them. The point when this line reaches zero would give the
position of the vanishing point on the horizon line.

More formally, we used wavelets to get the typical scales
within a column, because they are very adapted to a multi-
scale analysis. We run this algorithm for each column,
which gives us a representation of the signal in the scale

space (cf figure 11). We then select all the local maxima,
which is motivated by the fact that within a column, the
maxima should be located at more or less the same scales.
Then we count the number of maxima that we get for each
scale, which gives us a histogram.

Figure 11. Signal corresponding to a column of figure 10 (top).
Representation in scale space, the scale being the y-axis. The
maxima are indicated in red. Their projection on the scale axis
will give us a histogram that will be our feature vector.

After doing that for all the columns, we get a 2D his-
togram like the one in figure 12. This figure shows very
clearly that the maxima are aligned along lines that will
meet at 0, where each line corresponds to a different scale of
the pattern of the wallpaper. The position of this point will
give the position of the vanishing point. If this example is
too perfect to be very realistic, we could still observe a de-
creasing trends when we used the same layout with different
textures. Once we get this histogram, we found two ways
that did a relatively good job at finding the right position for
the vanishing point.

The first one is an optimization function using a
RANSAC loop : we draw a line between two points and we
look at the distance between the line and the points. We then
scale these distances according to an optimization function
(we found that using a function that is quadratic close to
zero and then constant gave good results, since it doesn’t pe-
nalize outliers too much), and add them. We then select the
line with the lowest score. The second method was to use a
Hough transform, and to fit the line that would correspond
to the maximum peak. Once again, the use of the Hough
transform is justified by the fact that our way of obtaining
the diagram is very noisy and we have many outliers.

These methods did not always work, but using one or the
other we could usually get a good estimation of the vanish-
ing point. This approach still has many flaws, and polish-
ing it could be an interesting research direction. It is obvi-
ously not practical for a real time approach since running a
wavelet transform on all columns require too much time.

Still, the fact that we could get a good estimation of the
vanishing points in some cases where the texture was ir-
regular was quite encouraging. However, we did not have
time to identify what made our algorithm fail in many cases.
With more time, we would have liked to try a 2D wavelet
approach and compare it with our current results.

6



Figure 12. 2D histogram of our scale maxima. We can see clearly
different linear trends.

4. Results

In this section, we will study the different results that we
obtained and compare our algorithms.

4.1. Database

We created two different datasets for our purpose. The
first one was computer generated, using Blender, which al-
lowed us to have ground truth images, where the camera
parameters are known exactly, as well as the different an-
gles. A few samples of this dataset are given in figure 13.

Figure 13. Different views of the same plane seen from different
angles : e = 30� for the first line, e = 0� for the second; a = �45�

for the first column, a = 0� for the second and a = 45� for the third.

The second dataset was collected by taking pictures of
buildings of Stanford (outdoors and indoors scenes) to try
our algorithm on actual data. Unfortunately, this real data
was not labelled since it was not easy to know the azimuth
angle between the camera and the plane normal without ac-
tually measuring it, which we did not do. Still, we could try
our algorithm on this data and see how well it performed by
visually judging if the planes were rectified.

4.2. Results of our three approaches

The line-based approach can be considered as the stan-
dard one, since it is undoubtedly the most reliable of the

three. It is also the one that we could test the most inten-
sively. Here are the results that we got from our synthetic
dataset. The results are given in figure 14. Each rectan-
gle corresponds to an outcome of our algorithm (the images
being sampled according to their azimuth and elevation an-
gles). We then plotted the difference between the azimuth
we found and the real azimuth.

Figure 14. Validation of our line-based algorithm on our synthetic
database.

We can see that our results are very encouraging. Our
algorithm is accurate within a couple of degrees almost ev-
erytime, until it breaks when the view is too slanted, at an
azimuth of around 80

�.
When tested on our second dataset (real data), we still

got very good rectification results, as we can see in figure
15. None of the images that we tried gave totally wrong
rectification results.

Figure 15. A few results on real data. The left images are the
original ones, and the right ones are the rectified ones. We super-
imposed actual horizontal and vertical lines in red to compare with
a ground truth.

However, we noticed a few small discrepancies, as we
show in figure 16. This figure shows a partially rectified
image, with the horizon line in blue and in red the vanish-
ing point given by our algorithm. In red are actual vertical
lines and in green world space horizontal lines. The reason
why our vanishing point is not exactly where it should be is
because one of our basic assumptions does not hold in that
case. We can notice that after the partial rectification, the
vertical lines are not completely vertical, and the horizon
line does not go through the real vanishing point. This is in
fact an example where the photo was probably taken while

7



moving, and the gravity direction given by our sensors is
slightly off. But for most images, this was not a problem,
and keeping still while taking the photo was enough to get
reliable accelerometer values.

Figure 16. Example of a result slightly off because of the inaccu-
racies of the sensors.

One last remark that we can make about this algorithm
is that it could probably be extended to a search for multi-
ple vanishing points, using the photo of a room for exam-
ple. Figure 17 gives a good example of this. In this photo
where there are two dominant plane orientations, our algo-
rithm could find two peaks, one corresponding to a plane
with an azimuth angle close to zero (a plane facing us), and
another peak is found for a plane on our left, which is ex-
actly what this image is.

We did not run an extensive testing sequence with the
point-based algorithm, but comparing the results between
this approach and the line-based approach could confirm
our intuition on its lower accuracy.

What we see in figure 18 is striking : if both results man-
age to get the right azimuth (30�), the point-based approach
has a much higher background noise than the line-based ap-
proach. This is due to the fact that many edge pixels that
do not belong to any line will add their contribution, which
leads to this background noise. Also, since we do not use
any information about the length of lines, we cannot get
peaked distributions like in the line-based approach. These
observations show that we cannot expect to get as good re-
sults from this method in real world applications, but we
can perhaps get results that are good enough given that it is
much faster to compute.

Finally, we already stated that our last approach, the
texture-based approach, gave unreliable results, but this is
due to the difficulty of the task. To illustrate this further,
we show in figure 19 different examples of textures with
their 2D histogram of scales, one of them being processed
successfully by our algorithm, while the second one is not.

Figure 17. Original photo with 2 distinct vanishing points (top).
Likelihood of the azimuth angle (bottom).

Visually, we can see that the second histogram is much
more challenging and even the human eye would have trou-
ble fitting a line through it. This is due to the fact that the
pattern is less repetitive compared to the other one, so there
are many multiple concurrent scales. Still, it can be consid-
ered as a success to manage to process more or less regular
textures like the first one since the two other approaches
discussed above would fail to find a correct vanishing point.

4.3. Implementation on Android

The highlight of this project was not only to develop real-
istic approaches to find the vanishing point of a plane in real
time but part of the interest was also to implement them. We
could implement the line-based method and the point-based
method on a tablet (Nexus 7), using the OpenCV library.
We will not develop the application in itself much here since
it was already showcased during the poster session.

But to show the promising aspects of the point-based ap-
proach, we will give our performance results in terms of
speed. When our application was in multi-threading mode,

8



Figure 18. Normalized likelihood obtained by both algorithms
when applied to the top image of figure 5. The top result was
obtained with the line-based approach ; the bottom one with the
point-based approach.

Figure 19. Exemple of textures with their associated algorithms.
The first one was processed accurately while the second one gave
a wrong vanishing point position.

the tablet was doing 2 things.

• The main graphic thread was taking a frame, the last
computed value of the azimuth angle as well as the
sensor data to completely rectify the frame

• Meanwhile, another thread would take a downsampled
version of the frame (dimensions divided by 8 com-
pared to the full resolution frame) and run the slower
algorithm (line-based or point-based depending of the
mode) that would compute the azimuth angle.

The performances we got when running this mode were
the following :

• The full rectification of the high resolution frame took
about 5 frames (with a framerate of around 30 frames
per second)

• The line-based approach took around 30 frames to
compute a new version of the azimuth angle

• The point-based approach took around 8 frames to
compute a new version of the azimuth angle.

In the end, if we noticed that the point-based approach
was, as expected, less accurate than the line-based ap-
proach, we could make it run almost as fast as the thread
that ran the rectification, which means that our real-time re-
quirement is nicely met.

5. Conclusion and future developments

It was interesting to develop three different approaches
to solve a same problem. Each of those has its pros and
cons. The line-based approach provides a high accuracy but
takes a longer time to compute ; the point-based approach
is much faster but less accurate ; the texture-based approach
works in unexpected cases as soon as there is some structure
in the texture of the plane but it can be difficult to get good
results when the texture becomes too irregular.

For our original real-time problem however, it seems like
we have developed an interesting method, the point-based
approach, that can be very efficient while still giving rela-
tively good results. A bit of additional work would be nec-
essary to optimize it even further. For example, we could
probably get rid of the first step, the partial rectification of
the image. Indeed, we do not need to have a horizontal hori-
zon line to run our algorithm, and this would decrease the
computation time even further. Another direction that we
would like to look at is the time coherence between con-
secutive frames. If we could run our algorithm fast enough,
then we could expect two consecutive processed frames to
give close results in terms of azimuth, especially if the ac-
celerometers have not measured high accelerations mean-
while. Using this prior knowledge, we could temporally
smooth our results to get rid of obvious bad results.

9



6. Thanks

I warmly thank Roland Angst as well as my advisor
Bernd Girod for their support and very relevant suggestions
through the project.

References

[1] D. Lowe, “Distinctive Image Features from Scale-
Invariant Keypoints,” International Journal of Com-

puter Vision, 2004.

[2] J.M. Morel, G. Yu, “ASIFT: A New Framework for
Fully Ane Invariant Image Comparison,” SIAM Journal

on Imaging Sciences, 2009.

[3] D. Kurs, S. Benhimane, “Inertial sensor-aligned visual
feature descriptors”, CVPR, 2011.

[4] R. Hartley, A. Zisserman, “Multiple View Geometry in
Computer Vision”, Second edition, Cambridge Univer-

sity Press, 2004.

10


