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Abstract—The segmentation of retinal blood vessels in the
retina is a critical step in diagnosis of diabetic retinopathy. In this
paper, we present a new method for automatically segmenting
blood vessels in retinal images. Five basic algorithms for segment-
ing retinal blood vessels, based on different image processing
techniques, are described and their strengths and weaknesses
are compared. A hybrid algorithm that combines the confidence
outputs of each basic algorithm is described. The performance
of each algorithm was tested on the DRIVE dataset. Our hybrid
algorithm performs segmentation with similar precision and
sensitivity as a trained human observer.

I. INTRODUCTION

Diabetic retinopathy is the leading cause of blindness among
adults aged 20-74 years in the United States [1]. According
to the World Health Organization (WHO), screening retina for
diabetic retinopathy is essential for diabetic patients and will
reduce the burden of disease [3]. However, retinal images can
be difficult to interpret, and computational image analysis of-
fers the potential to increase efficiency and diagnostic accuracy
of the screening process.

Automatic blood vessel segmentation in the images can help
speed diagnosis and improve the diagnostic performance of
less specialized physicians. An essential step in feature extrac-
tion is blood vessel segmentation of the original image. Many
algorithms have been developed to accurately segment blood
vessels from images with a variety of underlying pathologies
and across a variety of ophthalmic imaging systems [9].

This work focuses on developing existing retinal blood ves-
sel segmentation algorithms, comparing their performances,
and combining them to achieve superior performance. For
this project, the Digital Retinal Images for Vessel Extraction
(DRIVE) database of retinal images was used [6], [7]. This
database contains 40 images, 20 for training and 20 for
testing. These images were manually segmented by two trained
researchers. The algorithms were implemented on the original
images and the hand segmentations were used to evaluate the
performance of the developed algorithms.

The next section of this report explains five distinct vessel
segmentation algorithms developed and applied to the DRIVE
database. This section is followed by the pipeline developed
for combining these algorithms for superior performance. The
performance results of all these algorithms are then presented
and compared.

II. BASIC VESSEL SEGMENTATION ALGORITHMS

Retinal vessel segmentation algorithms have been heavily
researched. There are several approaches to the segmentation.
Among these approaches, five of them were chosen for imple-
mentation in this project. These methods utilize different im-
age processing techniques and each offer different advantages
and disadvantages in vessel segmentation [9]. These properties
are then exploited to develop a hybrid algorithm.

A. Matched Filtering

Matched filtering for blood vessel segmentation has first
been developed in 1989 [11]. Since then, several different
algorithms were developed based on this approach [12] [13]
[14] [15] [16] [17]. All of these algorithms are based one the
following observations from the retinal blood vessels [11]:

1) Blood vessels usually have limited curvature. Therefore,
the anti-parallel pairs can be approximated by piecewise
linear segments.

2) It is observed that the vessel diameters (observed in 2D
retinal images as widths) decrease as they move radially
outward from the optic disk and range from 2 to 10
pixels in the resulting images from DRIVE database.

3) The cross section gray level pixel intensity of blood
vessels has a Gaussian profile. Their profile can be
approximated by a Gaussian curve:
f(x, y) = A(1 � k · exp(

�d

2

2�

2 )), where d is the per-
pendicular distance between the point (x, y) and the
straight line passing through the center of the blood
vessel in a direction along its length, � is the spread
of the intensity profile, A is the gray-level intensity of
the local background and k is a measure of reflectance
of the blood vessel relative to its neighborhood.

For the implementation of this algorithm, a 2D matched
filter of Gaussian profile is used. 12 different kernel filters are
implemented in 15

� increments to cover all directions. The
kernels have a � of 2, and are truncated at a neighborhood
of N = {(u, v) | |u|  3�, |v|  L

2

}, where L = 9. The
mean value of each kernel is then subtracted from it. These
kernels are then used as convolution masks across the image.
All 12 kernels are convolved with the image and at each
neighborhood, the filter that generates the maximum result is
considered the correct vessel orientation.



It is worthy to note that the matched filtering algorithm was
implemented on the green channel of the fundus images. The
reason for this decision is that this channel offers the highest
intensity contrast between the vessels and the background as
experimentally determined and also confirmed by literature
[9].

After running the matched filtering algorithm, the image is
further edited based on area and proximity of detected regions.
Fig. 1 displays the results of this algorithm.

Fig. 1. Sample result for matched filtering algorithm on Image 19 of DRIVE
database. True positives (green), false positives (red), false negatives (blue),
true negatives (black).

TABLE I
MATCHED FILTER RESULTS

Image Accuracy Sensitivity Precision Specificity
01 92.39 73.24 71.56 95.41
02 92.48 74.41 76.28 95.78
03 91.84 66.69 76.78 96.37
04 92.80 62.09 81.99 97.79
05 92.62 65.58 79.10 97.12
06 92.05 67.16 75.99 96.34
07 91.72 60.72 74.39 96.67
08 90.47 63.77 63.30 94.47
09 92.46 68.28 69.95 95.87
10 92.58 68.07 71.61 96.11
11 92.12 62.10 74.60 96.74
12 92.15 71.29 69.54 95.29
13 91.91 63.27 77.76 96.87
14 92.84 71.53 70.37 95.81
15 92.33 74.28 62.03 94.51
16 91.63 63.01 72.34 96.17
17 91.53 64.30 68.16 95.56
18 92.59 72.52 67.98 95.33
19 93.09 76.59 71.11 95.48
20 92.17 76.70 62.32 94.13

Mean 92.19 68.28 71.86 95.89

B. Supervised Pattern Recognition
Supervised methods have been shown to perform well on

the problem of blood vessel segmentation [18], [19], [20],
[21], [22]. These methods vary widely in their choice of
features and type of classifier used, but all perform pixel-based
classification.

The disadvantage of any supervised method that ground-
truth classes from a training set are required. Though these
may not always be available or convenient to obtain in
practice, for our application this data is available to researchers
in the DRIVE [6], [7].

The method described below is adapted from the work of
Marı́n et. al. [22].

1) Preprocessing: In following with [22], three preprocess-
ing steps are applied to the images before the features are ex-
tracted. The algorithm uses only the green color channel in the
RGB colorspace. The first preprocessing step is morphological
opening with a three-pixel diameter disk structuring element
to reduce the effect of the central vessel light reflex, a brighter
section along the vessel ridges.

The second preprocessing step, called background homog-
enization, produces uniform background gray levels across
the entire set of images. The local background gray level is
computed by applying a 69⇥69 mean filter to the image. The
background is then subtracted and the resulting gray levels are
scaled from 0 to 1. Finally, a constant is added to the image
gray levels so the mode gray level value in image is set to 0.5.

The final preprocessing step is a top-hat transformation
on the complement of the image using an eight-pixel radius
disk as the structuring element. This final preprocessing step
enhances the dark regions in the original image, including the
blood vessels, while removing brighter regions such as the
optic disk.

2) Neural Network classifier: A neural network is used to
classify each pixel in the test images as vessel or non-vessel.
The feature vector associated with each pixel includes seven
features, five based on local gray-level information and two
based on Hu moment invariants. Hu moment invariants were
selected for their scale and rotational invariance.

The gray-level features are computed for a pixel, (x, y) ,
using the pixel gray-level value,and the gray-level statistics
in a 9 ⇥ 9 window, W

9

(x, y) centered at (x, y). The five
features include the center pixel gray-level value, the gray-
level standard deviation within the window, and the absolute
differences between the center pixel gray-level and the min-
imum, maximum and mean gray-level values in the window.
Additionally, for each pixel, the 1st and 2nd Hu moments,
I

1

and I

2

are computed for a 17⇥ 17 neighborhood window
multiplied point-wise by a zero-mean Gaussian of the same
size. The absolute value of the logarithm of the Hu moments
(| log(I

1

)| and | log(I
2

)|) are used as the final two features
associated with the pixel. The features are scaled so that each
has zero mean and unit variance.

The training set included 27503 pixels (8096 vessel, 19407
non-vessel), representing a relatively small percentage (0.61%)
of pixels in the training images. The pixels in the training



set were selected by the authors of [22], available at http:
//www.uhu.es/retinopathy/eng/bd.php.

The structure of the neural network used is a multi-layer
feed-forward back propagation neural network, with seven
input nodes, three hidden layers with 15 nodes each and one
output node. The transfer functions for the hidden layers are
linear, and the transfer function for the output layer is the log-
sigmoid function, logsig(x) = 1

1+exp{�x} . 70% of the training
set was used for training and the other 30% for cross-validation
to prevent over-fitting of the classifier.

No post-processing was applied to the results of the neural
network classifier besides binarization. The output of the
classifier was nearly binary (the exception being a small
number of pixels along the edges of vessels with values very
close to 1), so a threshold of ⌧ = 0.75 was used for all images.

A disadvantage of this method is that because the classifica-
tion is pixel-by-pixel, the result often has many smaller discon-
nected segments. Therefore, post-processing methods designed
to reduce noise by removing small connected components will
also remove these disconnected segments.

Fig. 2. Sample result for neural network algorithm on Image 19. True
positives (green), false positives (red), false negatives (blue), true negatives
(black).

C. Multi-scale Line-detection

This method is based on the work of Nguyen et. al. [23]. The
idea behind this approach is that the blood vessel structures
can be approximated as piecewise linear, so line detection
on multiple scales can be used to separate the blood vessel
structure from the background. By using lines of multiple
lengths, vessels of different sizes and scales can be detected;
problematic features, such as the small-scale vessel central
light reflex (described above) have limited impact on the result
at larger scales.

TABLE II
NEURAL NETWORK PERFORMANCE RESULTS

Image Accuracy Sensitivity Precision Specificity
01 94.40 76.16 80.11 97.15
02 94.58 73.46 88.44 98.31
03 93.34 69.20 82.26 97.45
04 94.20 63.49 90.08 98.92
05 93.99 67.73 84.97 98.12
06 93.71 67.14 85.11 98.07
07 93.35 65.73 80.48 97.57
08 92.93 63.30 76.41 97.19
09 94.19 68.86 79.01 97.57
10 94.36 71.13 79.47 97.51
11 93.76 65.50 82.78 97.97
12 94.17 72.43 79.22 97.28
13 93.63 66.70 85.15 98.08
14 94.21 75.80 75.26 96.67
15 94.21 74.03 71.33 96.55
16 93.97 68.44 82.45 97.81
17 93.80 70.15 77.44 97.13
18 94.02 72.56 74.68 96.81
19 95.51 80.70 81.74 97.53
20 94.49 76.97 72.92 96.59

Mean 94.04 70.47 80.47 97.51

1) Preprocessing: Background homogenization (described
in Neural Network preprocessing) without denoising was
applied to the inverted green channel of each RGB image.
To limit the impact of the optical disk, bright regions (gray-
level values exceeding a fixed threshold) are replaced with a
local average gray-level calculated with a 69⇥ 69 mean filter.

2) Line Detection: A total of seven scales are used for
line detection, with the line detectors of lengths 3, 5, . . . , 15.
For each scale, the following procedure was carried out.
For each pixel, the mean gray-level in a local 15 ⇥ 15

window, Iavg(x, y), is computed. For scale s, line detection
is performed by computing the weighted average of gray-
level values along lines of length S for each of 18 different
angles, 0�, 10�, . . . , 170�. The largest response, Is(x, y) over
all directions is calculated for each pixel. The line response for
scale s is the difference between the maximum line detection
response and the average gray-level, Rs

= I

s�I

avg . The line
response is rescaled, ˜

R

s to have zero mean and unit variance.
The multi-scale line response is obtained by computing a

linear combination of the line responses for each scale and the
original gray values in the image, I . The weighting used for
each line response is proportional to the scale of the response:

R =

1

64

 
X

s

s

˜

R

s

+ I

!
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The final output is scaled so that the values range from a 0 to
1.

3) Post-processing: The result above is used as an input to
the hybrid algorithm we describe in the next section. For the
multi-scale line detection to produce a binary classification as
a stand-alone algorithm, the following binarization and post-
processing method is used.

Otsu’s method was used to obtain a threshold to binarize
the multi-scale line response. The threshold returned by Otsu’s
method was reduced by 25% to retain finer features in the



image. Finally, all connected components with an area below
a fixed threshold of 100 pixels were eliminated.

Fig. 3. Stages of Multi-line detection method. Preprocessed image (left),
multi-scale line detection result (center), and post-processed binary classifi-
cation (right).

Fig. 4. Sample result for multi-scale line detection on Image 19. True
positives (green), false positives (red), false negatives (blue), true negatives
(black).

D. Scale-space analysis

A scale-dependent approach is attractive for vessel segmen-
tation because the vessels vary in width. We implemented the
algorithm by Martinez-Perez et al. [24], which separates the
information between different scales. We can then compute
the gradient and the hessian at each pixel for each scale in
order obtain a classification that combines all scales.

The luminance channel of the RGB image was used to
obtain maximum contrast. We can represent an image I(x, y)

at each scale s by convolving with a gaussian kernel of
standard deviation s, G(x, y; s) :

I(x, y; s) = I(x, y) ⇤G(x, y; s)

The partial derivatives, necessary for computing the gradient
and the hessian can then be computed as follows :

I

x

= I(x, y) ⇤ sG
x

TABLE III
MULTI-SCALE LINE DETECTION PERFORMANCE RESULTS

Image Accuracy Sensitivity Precision Specificity
01 93.36 81.49 71.72 95.15
02 93.72 77.67 79.88 96.55
03 92.35 74.39 73.43 95.41
04 94.09 73.05 80.79 97.33
05 93.73 75.30 77.80 96.62
06 92.67 72.58 74.73 95.97
07 92.90 73.11 73.24 95.92
08 91.36 73.74 63.43 93.89
09 92.95 76.43 67.70 95.15
10 93.29 77.08 69.84 95.49
11 92.45 72.78 70.13 95.38
12 92.83 79.26 68.47 94.78
13 92.72 73.84 74.56 95.84
14 92.51 82.12 64.26 93.89
15 92.34 79.82 59.83 93.79
16 92.89 77.00 76.60 96.46
17 93.63 78.57 68.44 94.90
18 94.59 81.69 68.76 95.18
19 94.09 85.57 73.73 95.83
20 93.50 85.12 64.86 94.50

Mean 93.09 77.53 71.11 95.41

I

y

= I(x, y) ⇤ sG
y

I

xx

= I(x, y) ⇤ s2G
xx

I

xy

= I(x, y) ⇤ s2G
xy

I

xy

= I(x, y) ⇤ s2G
yy

The strength of an edge is characterized by the norm of
the gradient. We expect the gradient magnitude to be large
at vessel edges only, but low on the background and vessels
centers. The gradient values are also used in the thresholding
method applied later in the pipeline.

The strength of the ridge (vessel) will be evaluated by the
largest eigenvalue of the Hessian. Only positive values are
considered since we have dark vessels on a bright background.
The eigenvalues can be easily and efficiently computed by
standard methods.

To compare values across scales, larger weights must be
applied to the lower scales, so that they span similar values. A
weight of 1/s is optimal. Finally, we combine multiple scales
by taking the maximum response at each pixel over all scales,
and then normalizing the values to the interval [0, 1].

As a compromise between the computation time and the
performance, we selected scales from s

min

= 1.5 to s

max

=

10 , incremented by 0.5. This choice is dependent on the size
of the image, and must be adapted if the image resolution
changes.

The figure 5 gives the output for three scales. For the low
value of s, the curvature map (column (b)) keeps the very small
vessels but the large ones are not completely reported, while
for the large value of s, the large vessels are correctly reported
but not the small ones. Finally, the last column shows the
combined result, which gives a better estimate for likelihood
of a vessel.



Fig. 5. Scale-space analysis for a 100 ⇥ 100 portion of a retinal image.
From left to right : s = 1.5, 3, 5, weighted inversely to the scale, and for the
last column : final output by putting all the scales together. (a) Gradient. (b)
Curvature (from hessian).

Fig. 6. Sample result for scale-space analysis algorithm on Image 19. True
positives (green), false positives (red), false negatives (blue), true negatives
(black).

E. Morphological processing

Another approach we can use is based on morphological
operators. The underlying idea behind this technique can be
illustrated with a simple example.

The function given in figure 7(a) has clear “bumps” that
represent two vessels, which are brighter than the surrounding
background (as in the inverted green image channel). We
demonstrate the results of two top-hat operators with struc-
turing elements of different size, the first size being the width
of the largest vessel (figure 7(b)), and the second one being the
width of the smallest vessel (figure 7(c)). As we can see, the
top-hat operator will get rid of the low variation background.
And, we observe that the result is optimal when the size of
the structuring element is approximately the same as the size
of the vessel. This is the motivation for applying a series of
top-hat operators with 8 different scales, spanning the whole
range of possible widths of the vessels.

TABLE IV
SCALE-SPACE RESULTS

Image Accuracy Sensitivity Precision Specificity
01 93.88 74.11 79.54 97.00
02 93.79 66.84 90.39 98.70
03 92.56 66.06 81.69 97.33
04 93.99 63.83 90.27 98.88
05 93.44 64.35 86.20 98.29
06 93.06 63.89 85.28 98.10
07 92.98 59.11 85.28 98.37
08 90.97 48.83 72.81 97.27
09 93.38 58.64 82.77 98.28
10 93.64 66.97 79.28 97.48
11 93.70 64.88 84.30 98.14
12 93.81 68.65 81.19 97.60
13 92.54 62.06 83.10 97.82
14 94.36 71.71 80.07 97.52
15 94.88 74.31 77.28 97.36
16 93.97 66.77 86.16 98.30
17 93.13 62.12 80.12 97.72
18 94.39 70.84 80.20 97.61
19 94.88 80.43 79.45 96.98
20 94.69 72.94 78.34 97.45

Mean 93.60 66.37 82.19 97.81

Fig. 7. Simplified example of the application of a top-hat operator in the case
of two vessels of different sizes on a noisy background. (a) Original function.
It is reproduced as a dotted line for the other figures. (b) Application of a
top-hat operator with a structuring element whose size is represented by the
red arrow, and which is similar to the size of the largest vessel. (c) Application
of a top-hat operator with a structuring element with a size similar to the size
of the smallest vessel. (d) Maximum of the functions obtained in (b) and (c)
and with a weight 2 for the second one.



In 2D, the principle remains the same, and we selected
a circular structuring elements, because the vessels have no
privileged direction.

Because the regular top-hat operator is very sensitive to
noise, we use a modified top-hate operator, as used by Men-
donca et al. [25], and defined as follows :

tophat(img) = img�min(open(close(img,Wc),W),img)

The small noisy fluctuations will not be retained thanks
to the closing operator that we apply first. The structuring
element associated to this closing operator Wc, is small but,
larger than the typical size of the noise we want to attenuate.
We used a disk of radius 2 pixels for our application.

The main structuring element W is chosen as a disk with
a radius varying from 1 to 8 pixels. This gives 8 results.
We average consecutive paired consecutive images to obtain
4 results, which is helps reduce the noise.

The last operation is the equivalent of the one we apply
in figure 7(c); for a given pixel, the response will be given
by a maximum on the values for each scale, weighted with
larger weights for lower scales, to compensate for the weaker
response. In the end, we normalize the output so that our
values range between 0 and 1.

Fig. 8. Sample result for morphological processing algorithm on Image
19. True positives (green), false positives (red), false negatives (blue), true
negatives (black).

TABLE V
MORPHOLOGICAL PROCESSING RESULTS

Image Accuracy Sensitivity Precision Specificity
01 94.11 66.98 86.71 98.38
02 94.29 67.98 93.18 99.09
03 92.28 59.40 85.59 98.20
04 94.16 62.31 93.78 99.33
05 93.20 55.34 94.85 99.50
06 93.41 62.53 89.57 98.74
07 93.45 56.50 93.22 99.35
08 92.80 48.66 92.46 99.41
09 94.23 60.46 89.37 98.99
10 93.84 57.30 90.24 99.11
11 93.94 61.50 89.95 98.94
12 94.09 67.01 84.69 98.17
13 93.09 58.56 91.58 99.07
14 94.58 66.53 85.96 98.49
15 95.47 66.90 88.23 98.92
16 94.14 62.21 92.61 99.21
17 93.71 62.03 85.09 98.39
18 94.33 63.21 85.91 98.58
19 96.00 72.95 94.21 99.35
20 95.05 71.89 81.81 97.98

Mean 94.01 62.51 89.45 98.86

III. HYBRID ALGORITHM

A. Overview

In order to take advantage of the strengths of each of these
methods, we have developed a hybrid algorithm for retinal
blood vessel segmentation. Our hybrid algorithm combines
the result the five methods above to achieve an improved
segmentation.

Four of the five methods above (with the exception of the
neural network-based method which was essentially binary in
practice), return a continuous value between 0 and 1 for each
pixel. While thresholding or other post-processing can be used
to obtain a binary output for each method, these values on [0, 1]

can also be thought of as a confidence or probability that a
given pixel is part of the blood vessel. Therefore, our set of
five basic segmentation methods gives us five different (and
possibly conflicting) confidence estimates for each pixel.

Our hybrid algorithm is a method to map the confidence
estimates returned by each basic algorithm into a single binary
classification. This is done in two steps. The first is to combine
the five confidence estimates at each pixel into a single value
between 0 and 1. The second step is to apply a sophisticated
thresholding technique, based on a priori knowledge of blood
vessel characteristics, to obtain a final binary classification.

B. Weighting and Modification

The five confidence estimates derived from our five basic
algorithms are combined using a simple, unweighted, average
of the confidences returned by each individual algorithm.

The idea behind this approach is that we expect that
averaging the five results will reduce noise. Since each method
relies on different image processing techniques, we expect the
noisy regions will differ across methods while local vessels
segments will be detected by multiple methods.

A modified version of the hybrid algorithm was also im-
plemented based on the following observation: four out five



of the implemented algorithms perform poorly around bright
exudate areas and the optic disk, as observed in Fig. 1, Fig. 2,
Fig. 6 and Fig. 4. Only the morphological vessel segmentation
approach performs well in these areas, as observed in Fig. 8.
However, this method misses many details away from the optic
disk.

In order to combine the advantages of all the implemented
algorithms, a mask was developed to separate out areas of
exudate and optic disk (bright areas) from the rest of the retinal
image. This mask was developed based on the green channel
of the original retinal image, which offers the highest vessel
intensity contrast as mentioned in the matched filtering section.
Adaptive histogram equalization is the next step in order to
compensate for the varying illumination of the image taken
by the fundus camera. A simple hard threshold is then used
to create the mask. The white areas of the mask are dilated to
avoid edge effects from the bright areas.

For this version of the hybrid algorithm, the white areas
of the mask are replaced by the vessel segmentation result
from the morphological algorithm. The rest of the image
uses the original hybrid algorithm with the averaging scheme
indicated above. Figure 9 displays this modification to the
hybrid algorithm. The resulting confidence estimates, shown in
the figure, are passed to the thresholding algorithm described
in the next section.

Fig. 9. Stages of modified hybrid algorithm. original hybrid image minus the
optic disk and other unusually bright areas (top left), morphological vessel
segmented image in the areas of interest (bottom left), and combined image
for the modified hybrid algorithm (right).

C. Thresholding: from a soft to a hard classification
The next step of the pipeline is to turn our soft classification

into a hard one. Until now, we only produced a map where
each pixel has a value between 0 and 1, this number expressing
the confidence or likelihood of the presence of a vessel. We
would like to map this into a binary classification, vessel or
background.

The first approach one might use for binarization is Otsu’s
method : the vessel pixels should have a high value while the

Fig. 10. Histogram of the output of the scale-space algorithm. For a better
visibility, the low values are clipped.

background values should be close to zero. But because of
the imperfections of our methods, a vessel pixel can also have
a low value. Checking the histogram of the output of one
of our algorithms, Figure 10, helps us understand why this
algorithm cannot be properly applied here. The distribution of
the pixel values between vessel and background is not well
separated. This can lead to pixels of the vessel that will turn
out to be below the threshold, and thus incorrectly labelled
as background. As a consequence, the vessel will appear as
disconnected segments (cf. Figure 11(b)).

To improve this method, we need to take into account
the properties of the retinal blood vessels. We know that the
vessels form a vascular tree of connected vessels. This insight
allows us to create a new algorithm that will iteratively grow
the tree, using the connectivity, as proposed by Martinez-Perez
et al. [24]

The first step of the algorithm is to establish pixels that will
be considered with certainty as background or vessel pixels.
To do that, we divide the pixels in two classes using the
Otsu threshold t in the global image. The pixels below t will
form the initial background class, and the ones above t will
form the initial vessel class. We characterize these two classes
with their mean µ

b

and µ

v

(respectfully, for the background
class and the vessel class) and their standard deviation �

b

and
�

v

. We consider that the pixels that are above µ

v

are always
vessel pixels, while the pixels below µ

b

are always background
pixels.

We use those labelled pixels as seed pixels for our growing
algorithm. We will alternatively grow the background and the
vessel regions by looking at the pixels connected to these
seeds. We will also use the gradient information; the pixels
with low gradients are either in the middle of a vessel or in the
background, so they are more easy to classify. We characterize
the histogram for the gradient values with the mean µ

g

and
the standard deviation �

g

.
At first, we classify only the pixels that have a clear value

for the likelihood (either very high or very low), and a low



value for the gradient. For the class vessel :

µ

v

� a�

v

 p and �  µ

g

+ a�

g

and for the class background :

p  µ

b

+ a�

b

and �  µ

g

We take the parameter a = 1 for the first step, and we
increment it by 0.5 for each run, until there are no pixels left
to classify. This means that we become progressively more
permissive in our labelling. The edge pixels outside of the
vessels usually have a higher value for the gradient, and the
fixed condition �  µ

g

for the background vessels will prevent
these problematic edge pixels to be labelled at this stage.

In the second stage, the same iterations are performed but
this time without the condition on the gradients. We iterate
until all pixels are classified.

An example of the results achieved by this algorithm is
given in Figure 11. We can see that even though it does not
perform as well as the manual classification, it takes advantage
of the tree structure of the vessels and performs much better
than the basic thresholding algorithm.

Fig. 11. (a) Detail of an original image obtained after application of our
5 vessel detection algorithms. (b) Result of Otsu’s method. (c) Result of the
tree growing method. (d) Manually labelled reference image

TABLE VI
HYBRID (ORIGINAL) RESULTS

Image Accuracy Sensitivity Precision Specificity
01 94.37 81.66 77.99 96.37
02 94.74 79.46 85.42 97.53
03 93.43 74.27 81.08 96.88
04 94.44 69.41 88.28 98.50
05 94.20 73.08 84.22 97.72
06 93.95 72.55 84.15 97.64
07 93.54 72.85 78.61 96.84
08 92.78 67.21 74.78 96.61
09 94.28 74.39 78.21 97.08
10 94.13 76.33 76.87 96.69
11 94.06 72.24 81.17 97.42
12 94.26 76.68 78.91 96.91
13 93.68 72.28 82.69 97.38
14 94.38 80.30 75.35 96.34
15 94.37 80.06 71.25 96.10
16 94.07 76.24 79.63 96.90
17 93.78 74.99 76.33 96.56
18 94.06 79.02 73.52 96.11
19 95.37 85.89 79.32 96.75
20 94.41 81.71 72.18 96.01

Mean 94.11 76.03 79.00 96.92

TABLE VII
HYBRID (MODIFIED) RESULTS

Image Accuracy Sensitivity Precision Specificity
01 94.46 73.43 83.85 97.77
02 94.21 67.95 92.56 99.00
03 93.49 71.38 83.59 97.48
04 93.52 56.29 95.45 99.56
05 94.23 68.62 88.36 98.50
06 93.96 68.44 87.80 98.36
07 94.06 62.55 91.61 99.09
08 93.69 63.29 84.32 98.24
09 94.59 68.38 84.92 98.29
10 94.58 72.34 82.46 97.78
11 93.97 60.56 91.34 99.12
12 94.43 71.27 83.84 97.93
13 93.39 61.57 90.62 98.90
14 94.80 75.37 80.79 97.51
15 94.90 74.78 77.15 97.33
16 94.45 69.18 87.76 98.47
17 93.99 64.15 85.63 98.41
18 94.61 71.83 81.19 97.73
19 95.62 81.98 83.21 97.60
20 95.01 77.91 77.74 97.18

Mean 94.30 69.06 85.71 98.21

IV. RESULTS

TABLE VIII
SECOND OBSERVER

Image Accuracy Sensitivity Precision Specificity
01 94.93 79.62 81.22 97.23
02 94.94 82.29 83.58 97.16
03 94.06 74.26 83.17 97.44
04 94.82 78.43 82.22 97.37
05 94.63 73.82 84.99 97.93
06 93.61 75.45 78.72 96.62
07 94.50 68.61 87.44 98.48
08 94.28 66.00 85.05 98.33
09 94.57 76.91 77.12 96.94
10 94.73 71.77 82.25 97.88
11 94.64 75.99 81.70 97.44
12 95.09 77.08 82.86 97.70
13 93.89 80.46 77.60 96.13
14 95.49 77.08 83.34 97.94
15 95.37 80.11 76.74 97.16
16 94.92 77.89 82.61 97.51
17 94.95 73.30 83.69 97.99
18 94.86 85.83 74.00 96.05
19 95.34 90.70 75.75 95.98
20 94.41 87.00 69.07 95.30

Mean 94.70 77.63 80.66 97.23

A. Comparison of Algorithm Performance

To measure the performance of our algorithms, we look at
the precision and sensitivity (recall) for each of 20 test images
for each basic algorithm and the two hybrid algorithms (see
Appendix VI-A).

We use as a reference the images manually labelled by a
second observer to estimate the consistency of two different
trained human observers. We realize that the human is far from
perfect in this task; compared to the first human observer, the
second one only achieves a mean sensitivity of 77.63% and a
precision of 80.66%, which average to 79.14%. An algorithm



Fig. 12. Sensitivity, precision and average of those two values for each of the
algorithms. From left to right : matched filtering, scale-space, line detection,
neural network, morphological, hybrid algorithm, modified hybrid algorithm,
and hand-labeled vessel segmentation by a second observer

that achieves similar performance to these values can be said
to perform similarly to a human, which is our ambition. The
fact that the segmentation results hand-labelled by two humans
are so different also proves the difficulty of our task; it can
be difficult to judge if a pixel belongs to a very small vessel
or to a noisy background and which pixels form the discrete
edge of the vessel.

If we compare our five algorithms, we see that they lie in
different zones of the trade-off curve between sensitivity and
precision. The line-detection algorithm has higher sensitivity
(it misses fewer small vessels) at the cost of a lower precision
(more false positives), while the other algorithms have a higher
precision. It is important to note a particular strength of the
morphological algorithm; as we noticed before, compared to
the other algorithms this one obtains fewer false positives
around the optical disk, resulting in the highest precision
among the methods. However, its sensitivity is low, with
weaker performance on small vessels.

The original hybrid algorithm has a higher average sensitiv-
ity/precision than all the other algorithms. Its value is 77.51%,
only 1.63% lower than the second method. The sensitivity and
precision are also quite similar to the values for a human.

Our second algorithm, which included the masking around
the optical disk, which was designed to obtain a higher
precision (we get fewer of the false positives around the optical
disk) meets this performance goal, but at the cost of a lower
sensitivity. On the whole, the average is 77.39%, which is very
close to that of the original hybrid algorithm. Depending on
the relative importance of small vessel or suppression of false
positives in a given application, we may prefer one algorithm
over the other.

V. CONCLUSION

This project focuses on blood vessel segmentation in reti-
nal fundus images for the potential application of automatic
diabetic retinopathy diagnosis. In this project, five algorithms
were implemented based on methods from relevant literature.
These five algorithms were then combined using two different
approaches in order to take advantage of their individual
advantages.

Several performance measures were computed in order to
evaluate the performance of each of the developed methods.
These measures include accuracy, precision, sensitivity, and
specificity. Each of the developed algorithms offer trade-offs
between these performance metrics. However, the modified
hybrid algorithm results tend to have superior performance
when averaging all the performance metrics.
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VI. APPENDIX

A. Performance Measures (continued)

To measure the performance of our algorithms, we com-
puted four statistics for each of the 20 test images. These
measures are accuracy, precision, sensitivity (recall), and
specificity, and are consistent with the performance metrics
used in the literature. Let, TF denote true positives (vessels
correctly identified as vessel), TN denote true negatives (non-
vessel pixels correctly identified as background), FP denote
false positives (background pixels incorrectly identified as
vessel), and FN denote false negatives (vessel pixels incor-
rectly identified as background). The performance measures
are defined as follows:

Accuracy =

TP + TN
TP + TN + FP + FN

Precision =

TP
TP + FP

Sensitivity =

TP
TP + FN

Specificity =

TN
TN + FP



For the rest of this part, we will only consider the precision
and the sensitivity. It is interesting to study this particular
couple because there is usually a trade-off between these
values. An algorithm with a high precision (few false positives)
will also tend to have a low precision (small vessels not
detected very well). On the other hand, an algorithm that
detects more of the small vessels will tend to have also more
false positives.

B. Weight selection

The way we chose the weights when we put the results of
our 5 algorithms together can seem a bit arbitrary : we gave the
same weight for the 5 likelihood maps. But as we saw earlier
that the algorithms do not achieve the same performances,
some being better for sensitivity, and others for precision so
a different weighting may be better

In order to see what could be the set of weights that would
give the highest average of precision and sensitivity, an option
is to try many of them. Since thes vectors lie in a subspace of
dimension 4 (5 weights of sum 1), it means we have a very
large space to explore. This is even more time consuming
as we need to compute the average for all the 20 images of
the training set for each set of parameters. In order to save
some time, we do not need to compute the 20 outputs of the
5 algorithms and instead we can store these 100 images after
computing them once. But we still need to run the thresholding
algorithm (as well as the additional optional masking for the
optical disk if needed) each time. This is why we only ran it
for values of weights that were multiple of 0.1, and we did not
include the values that would not give good results anyway,
based on other results.

We did this search for both versions of our algorithm : the
original hybrid one, giving higher sensitivity, and the modified
hybrid, giving higher precision. The figure 13 gives the results
for one of the searches. Each point corresponds to one set
of weights and it is plotted according to the mean precision
and sensitivity that were obtained on the 20 test images. The
red circle shows the performance achieved for equal weights,
and which corresponds to the specifications that were reported
in the previous sections. The corresponding set of weights
maximizing the average precision/sensitivity is plotted with a
star. We can see that we get a better sensitivity and a better
precision compared to the previous choice of equal weights.

The weights that we find are the following. For the original
hybrid algorithm (resp. modified algorithm), we get :

• 0 (0) for the matched filtering algorithm
• 0.2 (0) for the neural network algorithm
• 0.5 (0.5) for the multi-scale line detector
• 0.1 (0.4) for the scale-space analysis
• 0.2 (0.1) for the morphological processing

For the original hybrid, this gives a mean sensitivity of 77.66%
(compared to the previous 76.03%), a mean precision of
78.57% (compared to the previous 79.00%) and an average of
78.12% (compared to the previous 77.51%). For the modified

Fig. 13. Cloud of points corresponding to different sets of weights tested
for the modified hybrid algorithm. 429 different sets of weights were tested
for this algorithm.

hybrid, this gives a mean sensitivity of 69.84% (compared to
the previous 69.06%), a mean precision of 86.69% (compared
to the previous 85.71%) and an average of 78.26% (compared
to the previous 77.39%).

First, we see that this improved set of weight performs
strictly better than the set of equal weights that we used before,
and the average of the sensitivity and the precision becomes
even closer to the average for a human (79.14%).

Then, what is striking is that some of the weights are 0. This
means that an algorithm can strictly decrease the performance
if it is used, and instead it is better to use the other algorithms.
This is the case of the matched filtering algorithm in both
cases, and of the neural network algorithm in the second case.

Finally, this last result should be taken with a grain of salt.
Indeed, since we already used our training set to train our
supervised algorithms, we had to do this search of optimal
parameters on the testing set. But it is also the set that we
used to assess the performance of our algorithm. To assess
the real performance, we should have used another testing set.
The problem is that we had only two sets, the other images
being from other databases so a bit different to treat (different
resolution, etc., so we would have to adjust our algorithm for
them).

This problem could be avoided with a larger database, and
we could fine-tune the weights to get optimal results.

C. Member contributions

1) Karianne:

• Implementation of Neural Network-based method and
associated codes

• Implementation of Multi-scale Line detection method
• Write-ups of sections of report on Neural network based

method, multi-scale line detection method, abstract, and
overview of the hybrid algorithm



2) Sahinaz:
• Implementation of matched filtering method and associ-

ated codes
• Implementation of mask for the modified hybrid algo-

rithm
• Write-ups of sections of report on Introduction, Conclu-

sion, Matched Filtering, and Modified Hybrid Algorithm.
3) Jean-Baptiste:
• Implementation of scale-space analysis method
• Implementation of morphological processing method
• Implementation of thresholding algorithm
• Implementation of the hybrid algorithms
• Write-ups of sections of report on Scale-space analysis

method, Morphological processing method, Thresholding
algorithm and most of the Results section.


